
MATLAB® Compiler SDK™
C/C++ User’s Guide

R2020a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Compiler SDK™ C/C++ User’s Guide
© COPYRIGHT 2012–2020 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2015 Online only New for Version 6.0 (Release R2015a)
September 2015 Online only Revised for Version 6.1 (Release 2015b)
October 2015 Online only Rereleased for Version 6.0.1 (Release 2015aSP1)
March 2016 Online only Revised for Version 6.2 (Release 2016a)
September 2016 Online only Revised for Version 6.3 (Release R2016b)
March 2017 Online only Revised for Version 6.3.1 (Release R2017a)
September 2017 Online only Revised for Version 6.4 (Release R2017b)
March 2018 Online only Revised for Version 6.5 (Release R2018a)
September 2018 Online only Revised for Version 6.6 (Release R2018b)
March 2019 Online only Revised for Version 6.6.1 (Release R2019a)
September 2019 Online only Revised for Version 6.7 (Release R2019b)
March 2020 Online only Revised for Version 6.8 (Release R2020a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Installation and Configuration
1

Configure the mbuild Options File . 1-2

Solve Installation Problems . 1-3

Libraries
2

Implement a C Shared Library with a Driver Application 2-2

Call a C Shared Library . 2-5
Restrictions When Using MATLAB Function loadlibrary 2-8

Compile and Test a MATLAB Generated C Shared Library 2-9
Compiling the Driver Application . 2-9
Testing the Application . 2-9

Integrate C++ Shared Libraries . 2-11
C++ Shared Library Wrapper . 2-11
C++ Shared Library Example . 2-11

Use Multiple Shared Libraries in Single Application 2-16
Initialize and Terminate Multiple Shared Libraries 2-16
Work with MATLAB Function Handles . 2-17
Work with Objects . 2-20

Understand the mclmcrrt Proxy Layer . 2-23

Call MATLAB Compiler SDK API Functions from C/C++ 2-24
Functions in the Shared Library . 2-24
Type of Application . 2-24
Structure of Programs That Call Shared Libraries 2-25
Library Initialization and Termination Functions 2-25
Print and Error Handling Functions . 2-26
Functions Generated from MATLAB Files . 2-27
Retrieving MATLAB Runtime State Information While Using Shared

Libraries . 2-31

Memory Management and Cleanup . 2-32
Overview . 2-32
Passing mxArrays to Shared Libraries . 2-32

iii

Contents

Write Applications for macOS . 2-33
Objective-C/C++ Applications for Apple’s Cocoa API 2-33
Where’s the Example Code? . 2-33
Preparing Your Apple Xcode Development Environment 2-33
Build and Run the Sierpinski Application . 2-34
Running the Sierpinski Application . 2-35

Deployment Process
3

Package C/C++ Applications . 3-2

About the MATLAB Runtime . 3-3
How is the MATLAB Runtime Different from MATLAB? 3-3
Performance Considerations and the MATLAB Runtime 3-3

Install and Configure the MATLAB Runtime . 3-4
Download the MATLAB Runtime Installer from the Web 3-4
Install the MATLAB Runtime Interactively . 3-4
Install the MATLAB Runtime Non-Interactively . 3-5
Install the MATLAB Runtime without Administrator Rights 3-7
Multiple MATLAB Runtime Versions on Single Machine 3-7
MATLAB and MATLAB Runtime on Same Machine 3-7
Uninstall MATLAB Runtime . 3-8

Use Parallel Computing Toolbox in Deployed Applications 3-10
Embed Parallel Computing Toolbox Profile in the Application 3-10

Deploy Applications on Network Drives . 3-11

MATLAB Compiler SDK Deployment Messages . 3-12

Distributing Code to an End User
4

MATLAB Runtime Component Cache and Deployable Archive Embedding
. 4-2

Compiler Commands
5

Compiler Tips . 5-2
Deploying Applications That Call the Java Native Libraries 5-2
Using the VER Function in a Compiled MATLAB Application 5-2

iv Contents

Troubleshooting
6

Common Issues . 6-2

Compilation Failures . 6-3

Testing Failures . 6-5

Application Deployment Failures . 6-8

Troubleshoot mbuild . 6-10

Deployed Applications . 6-11

Reference Information
7

MATLAB Runtime Path Settings for Development and Testing 7-2
Path for Java Development on All Platforms . 7-2
Path Modifications Required for Accessibility . 7-2
Windows Settings for Development and Testing . 7-2
Linux Settings for Development and Testing . 7-2
OS X Settings for Development and Testing . 7-2

MATLAB Runtime Path Settings for Run-Time Deployment 7-4
General Path Guidelines . 7-4
Path for Java Applications on All Platforms . 7-4
Windows Path for Run-Time Deployment . 7-4
Linux Paths for Run-Time Deployment . 7-5
OS X Paths for Run-Time Deployment . 7-5

MATLAB Compiler SDK Licensing . 7-6
Use MATLAB Compiler SDK Licenses for Development 7-6

Deployment Product Terms . 7-7

Functions
8

C++ Utility Library Reference
A

Data Conversion Restrictions for the C++ MWArray API A-2

v

Primitive Types . A-3

C++ Utility Classes . A-4

C++ MATLAB Data API
9

Workflow: C++ Shared Library using MATLAB Data API
10

Workflow to Integrate with a C++ Shared Library that Uses the MATLAB
Data API . 10-2

Writing C++ Driver Code Using the C++ MATLAB Data Array API 10-3

vi Contents

Installation and Configuration

• “Configure the mbuild Options File” on page 1-2
• “Solve Installation Problems” on page 1-3

1

Configure the mbuild Options File
The mbuild utility compiles and links applications that integrate MATLAB generated shared libraries.
Its options file specifies the compiler and linker settings used to build the application.

By default, the mbuild utility selects the appropriate compiler using preset default configuration.

To change the options used by the mbuild utility:

1 Use mbuild -setup to make a copy of the appropriate options file in your preferences folder.

You can determine the path to the user preference folder using the MATLAB prefdir function.
2 Edit your copy of the options file to correspond to your specific needs, and save the modified file.

1 Installation and Configuration

1-2

Solve Installation Problems
You can contact MathWorks:

• Via the website at www.mathworks.com. On the MathWorks home page, click My Account to
access your MathWorks Account, and follow the instructions.

• Via email at service@mathworks.com.

 Solve Installation Problems

1-3

https://www.mathworks.com

Libraries

• “Implement a C Shared Library with a Driver Application” on page 2-2
• “Call a C Shared Library” on page 2-5
• “Compile and Test a MATLAB Generated C Shared Library” on page 2-9
• “Integrate C++ Shared Libraries” on page 2-11
• “Use Multiple Shared Libraries in Single Application” on page 2-16
• “Understand the mclmcrrt Proxy Layer” on page 2-23
• “Call MATLAB Compiler SDK API Functions from C/C++” on page 2-24
• “Memory Management and Cleanup” on page 2-32
• “Write Applications for macOS” on page 2-33

2

Implement a C Shared Library with a Driver Application
This example shows how to call a C shared library built with MATLAB Compiler SDK from a C
application.

1 Create the C shared library mentioned in the example see “Create a C Shared Library with
MATLAB Code”.

2 Locate the matrix.c file in matlabroot\extern\examples\compilersdk\c_cpp\matrix.

C Code to Implement Shared Library

/*===
 *
 * MATRIX.C Sample driver code that calls a shared library created
 * using MATLAB Compiler SDK. Refer to the MATLAB Compiler
 * SDK documentation for more information.
 *
 * Copyright 1984-2017 The MathWorks, Inc.
 *
 ===/

#include <stdio.h>

/* Include the MATLAB Runtime header file and the library specific header file
 * as generated by MATLAB Compiler SDK. */
#include "libmatrix.h"

/* This function is used to display a double matrix stored in an mxArray */
void display(const mxArray* in);

int run_main(int argc, const char **argv)
{
 mxArray *in1, *in2; /* Define input parameters */
 mxArray *out = NULL;/* and output parameters to be passed to the library functions */

 double data[] = {1,2,3,4,5,6,7,8,9};

 /* Create the input data */
 in1 = mxCreateDoubleMatrix(3,3,mxREAL);
 in2 = mxCreateDoubleMatrix(3,3,mxREAL);
 memcpy(mxGetPr(in1), data, 9*sizeof(double));
 memcpy(mxGetPr(in2), data, 9*sizeof(double));

 /* Call the library intialization routine and make sure that the
 * library was initialized properly. */
 if (!libmatrixInitialize()){
 fprintf(stderr,"Could not initialize the library.\n");
 return -2;
 }
 else
 {
 /* Call the library function */
 mlfAddmatrix(1, &out, in1, in2);
 /* Display the return value of the library function */
 printf("The sum of the matrix with itself is:\n");
 display(out);
 /* Destroy the return value since this variable will be reused in

2 Libraries

2-2

 * the next function call. Since we are going to reuse the variable,
 * we must set it to NULL. Refer to MATLAB Compiler SDK documentation
 * for more information. */
 mxDestroyArray(out);
 out=0;
 mlfMultiplymatrix(1, &out, in1, in2);
 printf("The product of the matrix with itself is:\n");
 display(out);
 mxDestroyArray(out);
 out=0;
 mlfEigmatrix(1, &out, in1);
 printf("The eigenvalues of the original matrix are:\n");
 display(out);
 mxDestroyArray(out);
 out=0;

 /* Call the library termination routine */
 libmatrixTerminate();

 /* Free the memory created */
 mxDestroyArray(in1);
 in1=0;
 mxDestroyArray(in2);
 in2=0;
 }

 /* Note that you should call mclTerminateApplication at the end of
 * your application.
 */
 mclTerminateApplication();
 return 0;
}

/*DISPLAY This function will display the double matrix stored in an mxArray.
 * This function assumes that the mxArray passed as input contains double
 * array.
 */
void display(const mxArray* in)
{
 size_t i=0, j=0; /* loop index variables */
 size_t r=0, c=0; /* variables to store the row and column length of the matrix */
 double *data; /* variable to point to the double data stored within the mxArray */

 /* Get the size of the matrix */
 r = mxGetM(in);
 c = mxGetN(in);
 /* Get a pointer to the double data in mxArray */
 data = mxGetPr(in);

 /* Loop through the data and display it in matrix format */
 for(i = 0; i < c; i++)
 {
 for(j = 0; j < r; j++)
 {
 printf("%4.2f\t",data[j*c+i]);
 }
 printf("\n");

 Implement a C Shared Library with a Driver Application

2-3

 }
 printf("\n");
}

int main(int argc, const char ** argv)
{
 /* Call the mclInitializeApplication routine. Make sure that the application
 * was initialized properly by checking the return status. This initialization
 * has to be done before calling any MATLAB APIs or MATLAB Compiler SDK
 * generated shared library functions. */
 if(!mclInitializeApplication(NULL,0))
 {
 fprintf(stderr, "Could not initialize the application.\n");
 return -1;
 }
 return mclRunMain((mclMainFcnType)run_main, argc, argv);
}

Copy and paste this file in the for_testing folder created when you generated the C shared
library.

3 Use the system command line to navigate to the for_testing folder where matrix.c exists.
4 To compile and link the application, use mbuild at the system command line.

mbuild matrix.c libmatrix.lib

The .lib extension is for Windows®. On Mac, the file extension is .dylib, and on UNIX® it
is .so.

5 From the system command prompt, run the application.

matrixThe sum of the matrix with itself is:
2.00 8.00 14.00
4.00 10.00 16.00
6.00 12.00 18.00

The product of the matrix with itself is:
30.00 66.00 102.00
36.00 81.00 126.00
42.00 96.00 150.00

The eigenvalues of the original matrix are:
16.12 -1.12 -0.00

See Also
mxArray (C)

Related Examples
• “Create a C Shared Library with MATLAB Code”
• “Call a C Shared Library” on page 2-5
• “Generate a C++ mwArray API Shared Library and Build a C++ Application”
• “Generate a C++ MATLAB Data API Shared Library and Build a C++ Application”

2 Libraries

2-4

Call a C Shared Library
To use one or more MATLAB Compiler SDK generated C shared libraries in your C application:

1 Include the generated header file for each library in your application.

Each generated shared library has an associated header file named libname.h.
2 Initialize the MATLAB Runtime proxy layer by calling mclmcrInitialize.
3 Use mclRunMain to call the C function in your driver code that uses the MATLAB generated

shared libraries.

mclRunMain() provides a convenient cross platform mechanism for wrapping the execution of
MATLAB code in the shared library.

Caution Do not use mclRunMain() on Mac if your application brings up its own full graphical
environment.

4 Declare variables and process input arguments.
5 Initialize the MATLAB Runtime by calling the mclInitializeApplication function. This

function sets up the global MATLAB Runtime state and enables the construction of MATLAB
Runtime instances.

Call the mclInitializeApplication() function once per application. It must be called before
any other MATLAB API functions. You can pass application-level options to this function.
mclInitializeApplication() returns a boolean status code.

Caution Avoid issuing cd commands from the driver application before calling
mclInitializeApplication. Failure to do so can cause a failure in MATLAB Runtime
initialization.

6 For each C shared library that you include in your application, call the initialization function for
the library.

The initialization function performs library-local initialization. It unpacks the deployable archive
and starts a MATLAB Runtime instance with the necessary information to execute the code in
that archive. The library initialization function is named libnameInitialize(). This function
returns a Boolean status code.

Note On Windows, if you want to have your shared library call a MATLAB shared library, the
MATLAB library initialization function (e.g., <libname>Initialize, <libname>Terminate,
mclInitialize, mclTerminate) cannot be called from your shared library during the
DllMain(DLL_ATTACH_PROCESS) call. This applies whether the intermediate shared library is
implicitly or explicitly loaded. Place the call after DllMain().

7 Invoke functions in the library, and process the results. (This is the main body of the program.)

Note If your driver application displays MATLAB figure windows, include a call to
mclWaitForFiguresToDie before calling the Terminate functions and
mclTerminateApplication in the following two steps.

8 When your application no longer needs a given library, call the termination function for the
library.

 Call a C Shared Library

2-5

The terminate function frees the resources associated with the library's MATLAB Runtime
instance. The library termination function is named libnameTerminate(). Once a library has
been terminated, the functions exported by the library cannot be called again in the application.

Caution Issuing a <lib>Initialize call after a <lib>Terminate call (whether or not the
library is the same) causes unpredictable results.

9 When your application no longer needs to call any shared libraries, call the
mclTerminateApplication API function.

This function frees application-level resources used by the MATLAB Runtime. Once you call this
function, no further calls can be made to shared libraries in the application.

10 Clean up variables, close files, and exit.

The following example from matrix.c illustrates all of the above steps.

Call a C Shared Library from Your C Driver Application

/*===
 *
 * MATRIX.C Sample driver code that calls a shared library created
 * using MATLAB Compiler SDK. Refer to the MATLAB Compiler
 * SDK documentation for more information.
 *
 * Copyright 1984-2017 The MathWorks, Inc.
 *
 ===/

#include <stdio.h>

/* Include the MATLAB Runtime header file and the library specific header file
 * as generated by MATLAB Compiler SDK. */
#include "libmatrix.h"

/* This function is used to display a double matrix stored in an mxArray */
void display(const mxArray* in);

int run_main(int argc, const char **argv)
{
 mxArray *in1, *in2; /* Define input parameters */
 mxArray *out = NULL;/* and output parameters to be passed to the library functions */

 double data[] = {1,2,3,4,5,6,7,8,9};

 /* Create the input data */
 in1 = mxCreateDoubleMatrix(3,3,mxREAL);
 in2 = mxCreateDoubleMatrix(3,3,mxREAL);
 memcpy(mxGetPr(in1), data, 9*sizeof(double));
 memcpy(mxGetPr(in2), data, 9*sizeof(double));

 /* Call the library intialization routine and make sure that the
 * library was initialized properly. */
 if (!libmatrixInitialize()){
 fprintf(stderr,"Could not initialize the library.\n");
 return -2;
 }
 else

2 Libraries

2-6

 {
 /* Call the library function */
 mlfAddmatrix(1, &out, in1, in2);
 /* Display the return value of the library function */
 printf("The sum of the matrix with itself is:\n");
 display(out);
 /* Destroy the return value since this variable will be reused in
 * the next function call. Since we are going to reuse the variable,
 * we must set it to NULL. Refer to MATLAB Compiler SDK documentation
 * for more information. */
 mxDestroyArray(out);
 out=0;
 mlfMultiplymatrix(1, &out, in1, in2);
 printf("The product of the matrix with itself is:\n");
 display(out);
 mxDestroyArray(out);
 out=0;
 mlfEigmatrix(1, &out, in1);
 printf("The eigenvalues of the original matrix are:\n");
 display(out);
 mxDestroyArray(out);
 out=0;

 /* Call the library termination routine */
 libmatrixTerminate();

 /* Free the memory created */
 mxDestroyArray(in1);
 in1=0;
 mxDestroyArray(in2);
 in2=0;
 }

 /* Note that you should call mclTerminateApplication at the end of
 * your application.
 */
 mclTerminateApplication();
 return 0;
}

/*DISPLAY This function will display the double matrix stored in an mxArray.
 * This function assumes that the mxArray passed as input contains double
 * array.
 */
void display(const mxArray* in)
{
 size_t i=0, j=0; /* loop index variables */
 size_t r=0, c=0; /* variables to store the row and column length of the matrix */
 double *data; /* variable to point to the double data stored within the mxArray */

 /* Get the size of the matrix */
 r = mxGetM(in);
 c = mxGetN(in);
 /* Get a pointer to the double data in mxArray */
 data = mxGetPr(in);

 /* Loop through the data and display it in matrix format */

 Call a C Shared Library

2-7

 for(i = 0; i < c; i++)
 {
 for(j = 0; j < r; j++)
 {
 printf("%4.2f\t",data[j*c+i]);
 }
 printf("\n");
 }
 printf("\n");
}

int main(int argc, const char ** argv)
{
 /* Call the mclInitializeApplication routine. Make sure that the application
 * was initialized properly by checking the return status. This initialization
 * has to be done before calling any MATLAB APIs or MATLAB Compiler SDK
 * generated shared library functions. */
 if(!mclInitializeApplication(NULL,0))
 {
 fprintf(stderr, "Could not initialize the application.\n");
 return -1;
 }
 return mclRunMain((mclMainFcnType)run_main, argc, argv);
}

Restrictions When Using MATLAB Function loadlibrary
You cannot use the MATLAB function loadlibrary in MATLAB to load a C shared library built with
MATLAB Compiler SDK.

For more information about using loadlibrary, see “Calling Shared Libraries in Deployed
Applications” (MATLAB Compiler).

See Also
mclInitializeApplication | mclRunMain | mclTerminateApplication |
mclWaitForFiguresToDie | mclmcrInitialize

More About
• “Call MATLAB Compiler SDK API Functions from C/C++” on page 2-24
• “Compile and Test a MATLAB Generated C Shared Library” on page 2-9
• “Understand the mclmcrrt Proxy Layer” on page 2-23
• “Create a C Shared Library with MATLAB Code”
• “Create C/C++ Shared Libraries from Command Line”

2 Libraries

2-8

Compile and Test a MATLAB Generated C Shared Library
This page explains how to compile the C driver code along with the C shared libraries. After
compilation, you can test the complete C application.

Create the C shared library mentioned in the example “Create a C Shared Library with MATLAB
Code”. MATLAB Compiler SDK generates a wrapper file, a header file, and an export list when it
creates a C shared library. The header file contains all of the entry points for all of the packaged
MATLAB functions. The export list contains the set of symbols that are exported from a C shared
library.

Once the shared library is created, you can integrate it with the C driver code as explained in “Call a
C Shared Library” on page 2-5.For this example, the driver code matrix.c is located in matlabroot
\extern\examples\compilersdk\c_cpp\matrix.

Compiling the Driver Application
To compile the driver code matrix.c, you use a C/C++ compiler. Execute the following mbuild
command that corresponds to your development platform. This command uses your C/C++ compiler
to compile the code and link the driver code against the MATLAB generated C shared library.

mbuild matrix.c libmatrix.lib

The .lib extension is for Windows. On Mac, the file extension is .dylib, and on UNIX it is .so.

Note This command assumes that the C shared library, the driver code, and the corresponding
header file are in the current working folder.

This generates a standalone application, matrix.exe, on Windows, and matrix, on UNIX.

Testing the Application
These steps test the standalone C application and C shared library on your development machine.

1 To run the application, add the folder containing the shared library that was created to your
dynamic library path.

2 Update the path for your platform by following the instructions in “MATLAB Runtime Path
Settings for Development and Testing” on page 7-2.

3 Run the driver application from the prompt (command prompt on Windows, shell prompt on
UNIX) by typing the application name.

For Windows, type matrix.exe.

For Mac, type matrix.app/Contents/MacOS/matrix.

For UNIX, type matrix.

The results are displayed as

The sum of the matrix with itself is:
2.00 8.00 14.00

 Compile and Test a MATLAB Generated C Shared Library

2-9

4.00 10.00 16.00
6.00 12.00 18.00

The product of the matrix with itself is:
30.00 66.00 102.00
36.00 81.00 126.00
42.00 96.00 150.00

The eigenvalues of the original matrix are:
16.12 -1.12 -0.00

See Also
mbuild

More About
• “Call a C Shared Library” on page 2-5
• “Call MATLAB Compiler SDK API Functions from C/C++” on page 2-24
• “Create a C Shared Library with MATLAB Code”
• “Create C/C++ Shared Libraries from Command Line”
• “Implement a C Shared Library with a Driver Application” on page 2-2

2 Libraries

2-10

Integrate C++ Shared Libraries

C++ Shared Library Wrapper
The C++ library wrapper option allows you to create a shared library from an arbitrary set of
MATLAB files. MATLAB Compiler SDK generates a wrapper file and a header file. The header file
contains all of the entry points for all of the compiled MATLAB functions.

C++ Shared Library Example
This example rewrites the C shared library example using C++. The procedure for creating a C++
shared library from MATLAB files is identical to the procedure for creating a C shared library, except
you use the cpplib wrapper. Enter the following command on a single line:
mcc -W cpplib:libmatrix -T link:lib addmatrix.m multiplymatrix.m eigmatrix.m -v

The -W cpplib:<libname> option tells MATLAB Compiler SDK to generate a function wrapper for
a shared library and call it <libname>. The -T link:lib option specifies the target output as a
shared library. Note the directory where the product puts the shared library because you will need it
later.

Writing the Driver Application

Note Due to name mangling in C++, you must compile your driver application with the same version
of your third-party compiler that you use to compile your C++ shared library.

In the C++ version of the matrix application matrix_mwarray.cpp, arrays are represented by
objects of the class mwArray. Every mwArray class object contains a pointer to a MATLAB array
structure. For this reason, the attributes of an mwArray object are a superset of the attributes of a
MATLAB array. Every MATLAB array contains information about the size and shape of the array (i.e.,
the number of rows, columns, and pages) and either one or two arrays of data. The first array stores
the real part of the array data and the second array stores the imaginary part. For arrays with no
imaginary part, the second array is not present. The data in the array is arranged in column-major,
rather than row-major, order.

Caution Avoid issuing cd commands from the driver application prior to calling
mclInitializeApplication. Failure to do so can cause a failure in MATLAB Runtime
initialization.

For information about how MATLAB Compiler SDK uses a proxy layer for the libraries that an
application must link, see “Understand the mclmcrrt Proxy Layer” on page 2-23.

The matrix_mwarray.cpp driver file is located in matlabroot\extern\examples\compilersdk
\c_cpp\matrix.

C++ mwArray API Code to Implement Shared Library

/*==
 *
 * MATRIX_MWARRAY.CPP

 Integrate C++ Shared Libraries

2-11

 * Sample driver code that calls a C++ shared library created using
 * the MATLAB Compiler SDK. Refer to the MATLAB Compiler SDK
 * documentation for more information.
 *
 * Copyright 1984-Present The MathWorks, Inc.
 *
 ==/

// Include the library specific header file as generated by the
// MATLAB Compiler SDK
#include "libmatrix.h"

int run_main(int argc, const char **argv)
{
 if(!libmatrixInitialize())
 {
 std::cerr << "Could not initialize the library properly"
 << std::endl;
 return -1;
 }
 else
 {
 try
 {
 // Create input data
 double data[] = {1,2,3,4,5,6,7,8,9};
 mwArray in1(3, 3, mxDOUBLE_CLASS, mxREAL);
 mwArray in2(3, 3, mxDOUBLE_CLASS, mxREAL);
 in1.SetData(data, 9);
 in2.SetData(data, 9);

 // Create output array
 mwArray out;

 // Call the library function
 addmatrix(1, out, in1, in2);

 // Display the return value of the library function
 std::cout << "The sum of the matrix with itself is:" << std::endl;
 std::cout << out << std::endl;

 multiplymatrix(1, out, in1, in2);
 std::cout << "The product of the matrix with itself is:"
 << std::endl;
 std::cout << out << std::endl;

 eigmatrix(1, out, in1);
 std::cout << "The eigenvalues of the original matrix are:"
 << std::endl;
 std::cout << out << std::endl;
 }
 catch (const mwException& e)
 {
 std::cerr << e.what() << std::endl;
 return -2;
 }
 catch (...)
 {

2 Libraries

2-12

 std::cerr << "Unexpected error thrown" << std::endl;
 return -3;
 }
 // Call the application and library termination routine
 libmatrixTerminate();
 }
 // mclTerminateApplication shuts down the MATLAB Runtime.
 // You cannot restart it by calling mclInitializeApplication.
 // Call mclTerminateApplication once and only once in your application.
 mclTerminateApplication();
 return 0;
}

// The main routine. On the Mac, the main thread runs the system code, and
// user code must be processed by a secondary thread. On other platforms,
// the main thread runs both the system code and the user code.
int main(int argc, const char **argv)
{
 // Call application and library initialization. Perform this
 // initialization before calling any API functions or
 // Compiler SDK-generated libraries.
 if (!mclInitializeApplication(nullptr, 0))
 {
 std::cerr << "Could not initialize the application properly"
 << std::endl;
 return -1;
 }

 return mclRunMain(static_cast<mclMainFcnType>(run_main), argc, argv);
}

Compiling the Driver Application

To compile the matrix_mwarray.cpp driver code, you use your C++ compiler. By executing the
following mbuild command that corresponds to your development platform, you will use your C++
compiler to compile the code.

mbuild matrix_mwarray.cpp libmatrix.lib (Windows)
mbuild matrix_mwarray.cpp -L. -lmatrix -I. (UNIX)

Note This command assumes that the shared library and the corresponding header file are in the
current working directory.

On Windows, if this is not the case, specify the full path to libmatrix.lib, and use a -I option to
specify the directory containing the header file.

On UNIX, if this is not the case, replace the “.” (dot) following the -L and -I options with the name
of the directory that contains these files, respectively.

Incorporating a C++ Shared Library into an Application

There are two main differences to note when using a C++ shared library:

• Interface functions use the mwArray type to pass arguments, rather than the mxArray type used
with C shared libraries.

 Integrate C++ Shared Libraries

2-13

• C++ exceptions are used to report errors to the caller. Therefore, all calls must be wrapped in a
try-catch block.

Exported Function Signature

The C++ shared library target generates two sets of interfaces for each MATLAB function. For more
information, see “Functions Generated from MATLAB Files” on page 2-27. The generic signature of
the exported C++ functions is as follows:

MATLAB Functions with No Return Values

bool MW_CALL_CONV <function-name>(<const_mwArray_references>);

MATLAB Functions with at Least One Return Value

bool MW_CALL_CONV <function-name>(int <number_of_return_values>,
 <mwArray_references>, <const_mwArray_references>);

In this case, const_mwArray_references represents a comma-separated list of references of type
const mwArray& and mwArray_references represents a comma-separated list of references of
type mwArray&. For example, in the libmatrix library, the C++ interface to the addmatrix
MATLAB function is generated as:

void addmatrix(int nargout, mwArray& a, const mwArray& a1,
 const mwArray& a2);

where a is an output parameter and a1 and a2 are input parameters.

Input arguments passed to the MATLAB function via varargin must be passed via a single mwArray
that is a cell array. Each element in the cell array must constitute an input argument. Output
arguments retrieved from the MATLAB function via varargout must be retrieved via a single
mwArray that is a cell array. Each element in the cell array will constitute an output argument. The
number of elements in the cell array will be equal to number_of_return_values - the number of
named output parameters. Also note that,

• If the MATLAB function takes a varargin argument, the C++ function must be passed an
mwArray corresponding to that varargin, even if the mwArray is empty.

• If the MATLAB function takes a varargout argument, the C++ function must be passed an
mwArray corresponding to that varargin, even if number_of_return_values is set to the
number of named output arguments, which means meaning that varargout will be empty.

• The varargout argument needs to follow any named output arguments and precede any input
arguments.

• The varargin argument needs to be the last argument.

Error Handling

C++ interface functions handle errors during execution by throwing a C++ exception. Use the
mwException class for this purpose. Your application can catch mwExceptions and query the
what() method to get the error message. To correctly handle errors when calling the C++ interface
functions, wrap each call inside a try-catch block.

 try
{
 ...
 (call function)

2 Libraries

2-14

 ...
}
catch (const mwException& e)
{
 ...
 (handle error)
 ...
}

The matrix_mwarray.cpp application illustrates the typical way to handle errors when calling the C
++ interface functions.

Working with C++ Shared Libraries and Sparse Arrays

The MATLAB Compiler SDK C/C++ API includes static factory methods for working with sparse
arrays.

For a complete list of the methods, see “C++ Utility Classes” on page A-4.

See Also

More About
• “Generate a C++ mwArray API Shared Library and Build a C++ Application”
• “Create C/C++ Shared Libraries from Command Line”
• “Call MATLAB Compiler SDK API Functions from C/C++” on page 2-24
• “Use Multiple Shared Libraries in Single Application” on page 2-16

 Integrate C++ Shared Libraries

2-15

Use Multiple Shared Libraries in Single Application
In this section...
“Initialize and Terminate Multiple Shared Libraries” on page 2-16
“Work with MATLAB Function Handles” on page 2-17
“Work with Objects” on page 2-20

When developing applications that use multiple MATLAB shared libraries, consider the following:

• Each MATLAB shared library must be initialized separately.
• Each MATLAB shared library must be terminated separately.
• MATLAB function handles cannot be shared between shared libraries.
• MATLAB figure handles cannot be shared between shared libraries.
• MATLAB objects cannot be shared between shared libraries.
• C, Java®, and .NET objects cannot be shared between shared libraries.
• Executable data stored in cell arrays and structures cannot be shared between shared libraries

Initialize and Terminate Multiple Shared Libraries
To initialize and terminate multiple shared libraries:

1 Initialize the MATLAB Runtime using mclmcrInitialize().
2 Call the portion of the application that executes the MATLAB code using mclRunMain().
3 Before initializing the shared libraries, initialize the MATLAB application state using

mclInitializeApplication().
4 For each MATLAB shared library, call the generated initialization function,

libraryInitialize().
5 Add the code for working with the MATLAB code.
6 For each MATLAB shared library, release the resources used by the library using the generated

termination function, libraryTerminate().
7 Release the resources used by the MATLAB Runtime by calling mclTerminateApplication().

This example shows the use of two shared libraries.

Example driver code
#include <stdio.h>
#include "libAddMatrix.h"
#include "libSubMatrix.h"

int run_main(int argc, const char *argv[])
{

 if(!mclInitializeApplication(NULL,0))
 {
 fprintf(stderr, "Could not initialize the application.\n");
 return -1;
 }

 if (!libAddMatrixInitialize())
 {

2 Libraries

2-16

 fprintf(stderr,"Could not initialize the AddMatrix library.\n");
 return -2;
 }

 if (!libSubMatrixInitialize())
 {
 fprintf(stderr,"Could not initialize the SubMatrix library.\n");
 return -2;
 }

 try
 {
 ...
 }
 catch (const mwException& e)
 {
 std::cerr << e.what() << std::endl;
 return -2;
 }
 catch (...)
 {
 std::cerr << "Unexpected error thrown" << std::endl;
 return -3;
 }

 libAddMatrixTerminate();

 libSubMatrixTerminate();

 mclTerminateApplication();
 return 0;
}

int main(int ac, const char *av[])
{
 int err = 0;
 mclmcrInitialize();
 err = mclRunMain((mclMainFcnType) run_main, ac, av);
 return err;
}

Work with MATLAB Function Handles
A MATLAB function handle can be passed back and forth between a MATLAB Runtime instance and
an application. However, it cannot be passed from one MATLAB Runtime instance to another. For
example, suppose that you had two MATLAB functions, get_plot_handle and plot_xy, and
plot_xy used the function handle created by get_plot_handle.

% Saved as get_plot_handle.m
function h = get_plot_handle(lnSpec, lnWidth, mkEdge, mkFace, mkSize)
h = @draw_plot;
 function draw_plot(x, y)
 plot(x, y, lnSpec, ...
 'LineWidth', lnWidth, ...
 'MarkerEdgeColor', mkEdge, ...
 'MarkerFaceColor', mkFace, ...
 'MarkerSize', mkSize)

 Use Multiple Shared Libraries in Single Application

2-17

 end
end

% Saved as plot_xy.m
function plot_xy(x, y, h)
h(x, y);
end

If you packaged them into two separate shared libraries, the call to plot_xy would throw an
exception.

Example driver code

#include <stdio.h>
#include "get_plot_handle.h"
#include "plot_xy.h"

int run_main(int argc, const char *argv[])
{

 if(!mclInitializeApplication(NULL,0))
 {
 fprintf(stderr, "Could not initialize the application.\n");
 return -1;
 }

 if (!get_plot_handleInitialize())
 {
 fprintf(stderr,
 "Could not initialize the get_plot_handle library.\n");
 return -2;
 }

 if (!plot_xyInitialize())
 {
 fprintf(stderr,"Could not initialize the plot_xy library.\n");
 return -2;
 }

 try
 {
 mwArray lnSpec('--rs');
 mwArray lnWidth;
 lnWidth = 2.0;
 mwArray mkEdge('k');
 mwArray mkFace('g');
 mwArray mkSize;
 mkSize = 10.0;
 mwArray plot;
 get_plot_handle(1, plot, lnSpec, lnWidth, mkEdge, mkFace, mkSize);

 double x_data[] = {1,2,3,4,5,6,7,8,9};
 double y_data[] = {2,6,12,20,30,42,56,72,90};
 mwArray x(9, 1, mxDOUBLE_CLASS, mxREAL);
 mwArray y(9, 1, mxDOUBLE_CLASS, mxREAL);
 x.SetData(x_data, 9);
 y.SetData(y_data, 9);
 ploy_xy(x, y, plot);

2 Libraries

2-18

 }
 catch (const mwException& e)
 {
 std::cerr << e.what() << std::endl;
 return -2;
 }
 catch (...)
 {
 std::cerr << "Unexpected error thrown" << std::endl;
 return -3;
 }

 get_plot_handleTerminate();

 plot_xyTerminate();

 mclTerminateApplication();
 return 0;
}

int main(int ac, const char *av[])
{
 int err = 0;
 mclmcrInitialize();
 err = mclRunMain((mclMainFcnType) run_main, ac, av);
 return err;
}

One way to handle the situation is to package both functions into a single shared library. For example,
if you called the shared library plot_functions, your application would only need one call to
initialize the function and you could pass the function handle for plot_xy without error.

Example driver code
#include <stdio.h>
#include "get_plot_handle.h"
#include "plot_xy.h"

int run_main(int argc, const char *argv[])
{

 if(!mclInitializeApplication(NULL,0))
 {
 fprintf(stderr, "Could not initialize the application.\n");
 return -1;
 }

 if (plot_functionsInitialize())
 {
 fprintf(stderr,
 "Could not initialize the plot_functions library.\n");
 return -2;
 }

 try
 {
 mwArray lnSpec('--rs');
 mwArray lnWidth;

 Use Multiple Shared Libraries in Single Application

2-19

 lnWidth = 2.0;
 mwArray mkEdge('k');
 mwArray mkFace('g');
 mwArray mkSize;
 mkSize = 10.0;
 mwArray plot;
 get_plot_handle(1, plot, lnSpec, lnWidth, mkEdge, mkFace, mkSize);

 double x_data[] = {1,2,3,4,5,6,7,8,9};
 double y_data[] = {2,6,12,20,30,42,56,72,90};
 mwArray x(9, 1, mxDOUBLE_CLASS, mxREAL);
 mwArray y(9, 1, mxDOUBLE_CLASS, mxREAL);
 x.SetData(x_data, 9);
 y.SetData(y_data, 9);
 ploy_xy(x, y, plot);
 }
 catch (const mwException& e)
 {
 std::cerr << e.what() << std::endl;
 return -2;
 }
 catch (...)
 {
 std::cerr << "Unexpected error thrown" << std::endl;
 return -3;
 }

 plot_functionsTerminate();

 mclTerminateApplication();
 return 0;
}

int main(int ac, const char *av[])
{
 int err = 0;
 mclmcrInitialize();
 err = mclRunMain((mclMainFcnType) run_main, ac, av);
 return err;
}

Work with Objects
MATLAB Compiler SDK enables you to return the following types of objects from the MATLAB
Runtime to your application code:

• MATLAB
• C++
• .NET
• Java
• Python®

However, you cannot pass an object created in one MATLAB Runtime instance into a different
MATLAB Runtime instance. This conflict can happen when a function that returns an object and a
function that manipulates that object are packaged into different shared libraries.

2 Libraries

2-20

For example, say that you develop two functions. The first creates a bank account for a customer. The
second transfers funds between two accounts.

% Saved as account.m
classdef account < handle

 properties
 name
 end

 properties (SetAccess = protected)
 balance = 0
 number
 end

 methods
 function obj = account(name)
 obj.name = name;
 obj.number = round(rand * 1000);
 end

 function deposit(obj, deposit)
 new_bal = obj.balance + deposit;
 obj.balance = new_bal;
 end

 function withdraw(obj, withdrawl)
 new_bal = obj.balance - withdrawl;
 obj.balance = new_bal;
 end

 end
end

% Saved as open_acct .m
function acct = open_acct(name, open_bal)

 acct = account(name);

 if open_bal > 0
 acct.deposit(open_bal);
 end

end

% Saved as transfer.m
function transfer(source, dest, amount)

 if (source.balance > amount)
 dest.deposit(amount);
 source.withdraw(amount);
 end

end

If you packaged open_acct.m and transfer.m into separate shared libraries, you could not
transfer funds using accounts created with open_acct. The call to transfer would throw an

 Use Multiple Shared Libraries in Single Application

2-21

exception. One way of resolving this is to package both functions into a single shared library. You
could also refactor the application so as not to pass MATLAB objects to the functions.

See Also

More About
• “Call a C Shared Library” on page 2-5
• “Compile and Test a MATLAB Generated C Shared Library” on page 2-9

2 Libraries

2-22

Understand the mclmcrrt Proxy Layer
All application and software components generated by MATLAB Compiler™ and MATLAB Compiler
SDK need to link against only one MATLAB library, mclmcrrt. This library provides a proxy API for
all the public functions in MATLAB libraries used for matrix operations, MAT-file access, utility and
memory management, and application MATLAB Runtime. The mclmcrrt library lies between
deployed MATLAB code and these other version-dependent libraries, providing the following
functionality:

• Ensures that multiple versions of the MATLAB Runtime can coexist
• Provides a layer of indirection
• Ensures applications are thread-safe
• Loads the dependent (re-exported) libraries dynamically

The relationship between mclmcrrt and other MATLAB libraries is shown in the following figure.

The MCLMCRRT Proxy Layer

In the figure, solid arrows designate static linking and dotted arrows designate dynamic linking. The
figure illustrates how the mclmcrrt library layer sits above the mclmcr and mcr libraries. The
mclmcr library contains the run-time functionality of the deployed MATLAB code. The mcr module
ensures each bundle of deployed MATLAB code runs in its own context at run time. The mclmcrrt
proxy layer, in addition to loading the mclmcr, also dynamically loads the MX and MAT modules,
primarily for mxArray manipulation. For more information, see the MathWorks® Support database
and search for information on the MSVC shared library.

Caution Deployed applications must only link to the mclmcrrt proxy layer library (mclmcrrt.lib
on Windows, mclmcrrt.so on Linux®, and mclmcrrt.dylib on Macintosh). Do not link to the other
libraries shown in the figure, such as mclmcr, libmx, and so on.

 Understand the mclmcrrt Proxy Layer

2-23

https://www.mathworks.com/support.html

Call MATLAB Compiler SDK API Functions from C/C++

Functions in the Shared Library
A shared library generated by MATLAB Compiler SDK contains at least seven functions. There are
three generated functions to manage library initialization and termination, one each for printed
output and error messages, and two generated functions for each MATLAB file compiled into the
library.

To generate the functions described in this section, first copy sierpinski.m and triangle.c to
create a C shared library, triangle_legacy.cpp to create a C++ mwArray API shared library, or
triangle_generic.cpp to create a C++ MATLAB Data API shared library into your directory. The
files are found in matlabroot\extern\examples\compilersdk\c_cpp\triangle.

Type of Application
Create the shared library as explained in “Create C/C++ Shared Libraries from Command Line”.
Once your shared library is created, execute the following mbuild command that corresponds to
your development platform. This command uses your C/C++ compiler to compile the code and link
the driver code against the MATLAB generated C/C++ shared library.

For a C application, use mbuild triangle.c libmatrix.lib.

For C++ mwArray API application, use mbuild triangle_legacy.cpp libtriangle.lib

For C++ MATLAB Data API application, use mbuild matrix_mda.cpp libtriangle.lib

Note The .lib extension is for Windows. On Mac, the file extension is .dylib, and on UNIX it
is .so.

This command assumes that the C/C++ shared library, the driver code, and the corresponding header
file are in the current working folder.

These commands create a main program named triangle, and a shared library named
libtriangle. The library exports a single function that uses a simple iterative algorithm (contained
in sierpinski.m) to generate the fractal known as Sierpinski's Triangle. The main program in
triangle.c, triangle_legacy.cpp, triangle_generic.cpp can optionally take a single
numeric argument, which, if present, specifies the number of points used to generate the fractal. For
example, triangle 8000 generates a diagram with 8,000 points.

2 Libraries

2-24

In this example, MATLAB Compiler SDK places all of the generated functions into the generated file
libtriangle.c or libtriangle.cpp.

Structure of Programs That Call Shared Libraries
All programs that call MATLAB Compiler SDK generated shared libraries have roughly the same
structure:

1 Declare variables and process/validate input arguments.
2 Call mclInitializeApplication, and test for success. This function sets up the global

MATLAB Runtime state and enables the construction of MATLAB Runtime instances.
3 Call, once for each library, <libraryname>Initialize, to create the MATLAB Runtime

instance required by the library.
4 Invoke functions in the library, and process the results. (This is the main body of the program.)
5 Call, once for each library, <libraryname>Terminate, to destroy the associated MATLAB

Runtime.
6 Call mclTerminateApplication to free resources associated with the global MATLAB Runtime

state.
7 Clean up variables, close files, etc., and exit.

To see these steps in an actual example, review the main program in this example, triangle.c.

Library Initialization and Termination Functions
The library initialization and termination functions create and destroy, respectively, the MATLAB
Runtime instance required by the shared library. You must call the initialization function before you
invoke any of the other functions in the shared library, and you should call the termination function
after you are finished making calls into the shared library (or you risk leaking memory).

 Call MATLAB Compiler SDK API Functions from C/C++

2-25

There are two forms of the initialization function and one type of termination function. The simpler of
the two initialization functions takes no arguments; most likely this is the version your application
will call. In this example, this form of the initialization function is called libtriangleInitialize.

bool libtriangleInitialize(void)

This function creates an MATLAB Runtime instance using the default print and error handlers, and
other information generated during the compilation process.

However, if you want more control over how printed output and error messages are handled, you may
call the second form of the function, which takes two arguments.

bool libtriangleInitializeWithHandlers(
 mclOutputHandlerFcn error_handler,
 mclOutputHandlerFcn print_handler
)

By calling this function, you can provide your own versions of the print and error handling routines
called by the MATLAB Runtime. Each of these routines has the same signature (for complete details,
see “Print and Error Handling Functions” on page 2-26). By overriding the defaults, you can control
how output is displayed and, for example, whether or not it goes into a log file.

Note Before calling either form of the library initialization routine, you must first call
mclInitializeApplication to set up the global MATLAB Runtime state. See “Call a C Shared
Library” on page 2-5 for more information.

On Microsoft® Windows platforms, MATLAB Compiler SDK generates an additional initialization
function, the standard Microsoft DLL initialization function DllMain.

BOOL WINAPI DllMain(HINSTANCE hInstance, DWORD dwReason,
 void *pv)

The generated DllMain performs a very important service; it locates the directory in which the
shared library is stored on disk. This information is used to find the deployable archive, without which
the application will not run. If you modify the generated DllMain (not recommended), make sure you
preserve this part of its functionality.

Library termination is simple.

void libtriangleTerminate(void)

Call this function (once for each library) before calling mclTerminateApplication.

Print and Error Handling Functions
By default, MATLAB Compiler SDK generated applications and shared libraries send printed output
to standard output and error messages to standard error. MATLAB Compiler SDK generates a default
print handler and a default error handler that implement this policy. If you'd like to change this
behavior, you must write your own error and print handlers and pass them in to the appropriate
generated initialization function.

You may replace either, both, or neither of these two functions. The MATLAB Runtime sends all
regular output through the print handler and all error output through the error handler. Therefore, if

2 Libraries

2-26

you redefine either of these functions, the MATLAB Runtime will use your version of the function for
all the output that falls into class for which it invokes that handler.

The default print handler takes the following form.

static int mclDefaultPrintHandler(const char *s)

The implementation is straightforward; it takes a string, prints it on standard output, and returns the
number of characters printed. If you override or replace this function, your version must also take a
string and return the number of characters “handled.” The MATLAB Runtime calls the print handler
when an executing MATLAB file makes a request for printed output, e.g., via the MATLAB function
disp. The print handler does not terminate the output with a carriage return or line feed.

The default error handler has the same form as the print handler.

static int mclDefaultErrorHandler(const char *s)

However, the default implementation of the print handler is slightly different. It sends the output to
the standard error output stream, but if the string does not end with carriage return, the error
handler adds one. If you replace the default error handler with one of your own, you should perform
this check as well, or some of the error messages printed by the MATLAB Runtime will not be
properly formatted.

Caution The error handler, despite its name, does not handle the actual errors, but rather the
message produced after the errors have been caught and handled inside the MATLAB Runtime. You
cannot use this function to modify the error handling behavior of the MATLAB Runtime -- use the try
and catch statements in your MATLAB files if you want to control how a MATLAB Compiler SDK
generated application responds to an error condition.

Note If you provide alternate C++ implementations of either mclDefaultPrintHandler or
mclDefaultErrorHandler, then functions must be declared extern "C". For example:

extern "C" int myPrintHandler(const char *s);

Functions Generated from MATLAB Files
For each MATLAB file specified on the MATLAB Compiler SDK command line, the product generates
two functions, the mlx function and the mlf function. Each of these generated functions performs the
same action (calls your MATLAB file function). The two functions have different names and present
different interfaces. The name of each function is based on the name of the first function in the
MATLAB file (sierpinski, in this example); each function begins with a different three-letter prefix.

Note For C shared libraries, MATLAB Compiler SDK generates the mlx and mlf functions as
described in this section. For C++ shared libraries, the product generates the mlx function the same
way it does for the C shared library. However, the product generates a modified mlf function with
these differences:

• The mlf before the function name is dropped to keep compatibility with R13.
• The arguments to the function are mwArray instead of mxArray.

 Call MATLAB Compiler SDK API Functions from C/C++

2-27

mlx Interface Function

The function that begins with the prefix mlx takes the same type and number of arguments as a
MATLAB MEX-function. (See the External Interfaces documentation for more details on MEX-
functions.) The first argument, nlhs, is the number of output arguments, and the second argument,
plhs, is a pointer to an array that the function will fill with the requested number of return values.
(The “lhs” in these argument names is short for “left-hand side” -- the output variables in a MATLAB
expression are those on the left-hand side of the assignment operator.) The third and fourth
parameters are the number of inputs and an array containing the input variables.

void mlxSierpinski(int nlhs, mxArray *plhs[], int nrhs,
 mxArray *prhs[])

mlf Interface Function

The second of the generated functions begins with the prefix mlf. This function expects its input and
output arguments to be passed in as individual variables rather than packed into arrays. If the
function is capable of producing one or more outputs, the first argument is the number of outputs
requested by the caller.

void mlfSierpinski(int nargout, mxArray** x, mxArray** y,
 mxArray* iterations, mxArray* draw)

In both cases, the generated functions allocate memory for their return values. If you do not delete
this memory (via mxDestroyArray) when you are done with the output variables, your program will
leak memory.

Your program may call whichever of these functions is more convenient, as they both invoke your
MATLAB file function in an identical fashion. Most programs will likely call the mlf form of the
function to avoid managing the extra arrays required by the mlx form. The example program in
triangle.c calls mlfSierpinski.

mlfSierpinski(2, &x, &y, iterations, draw);

In this call, the caller requests two output arguments, x and y, and provides two inputs, iterations
and draw.

If the output variables you pass in to an mlf function are not NULL, the mlf function will attempt to
free them using mxDestroyArray. This means that you can reuse output variables in consecutive
calls to mlf functions without worrying about memory leaks. It also implies that you must pass either
NULL or a valid MATLAB array for all output variables or your program will fail because the memory
manager cannot distinguish between a non-initialized (invalid) array pointer and a valid array. It will
try to free a pointer that is not NULL -- freeing an invalid pointer usually causes a segmentation fault
or similar fatal error.

Using varargin and varargout in a MATLAB Function Interface

If your MATLAB function interface uses varargin or varargout, you must pass them as cell arrays.
For example, if you have N varargins, you need to create one cell array of size 1-by-N. Similarly,
varargouts are returned back as one cell array. The length of the varargout is equal to the
number of return values specified in the function call minus the number of actual variables passed. As
in the MATLAB software, the cell array representing varagout has to be the last return variable (the
variable preceding the first input variable) and the cell array representing varargins has to be the
last formal parameter to the function call.

2 Libraries

2-28

For information on creating cell arrays, refer to the C MEX function interface in the External
Interfaces documentation.

For example, consider this MATLAB file interface:

[a,b,varargout] = myfun(x,y,z,varargin)

The corresponding C interface for this is

void mlfMyfun(int numOfRetVars, mxArray **a, mxArray **b,
 mxArray **varargout, mxArray *x, mxArray *y,
 mxArray *z, mxArray *varargin)

In this example, the number of elements in varargout is (numOfRetVars - 2), where 2
represents the two variables, a and b, being returned. Both varargin and varargout are single
row, multiple column cell arrays.

Caution The C++ shared library interface does not support varargin with zero (0) input
arguments. Calling your program using an empty mwArray results in the packaged library receiving
an empty array with nargin = 1. The C shared library interface allows you to call mlfFOO(NULL)
(the packaged MATLAB code interprets this as nargin=0). However, calling FOO((mwArray)NULL)
with the C++ shared library interface causes the packaged MATLAB code to see an empty array as
the first input and interprets nargin=1.

For example, package some MATLAB code as a C++ shared library using varargin as the MATLAB
function's list of input arguments. Have the MATLAB code display the variable nargin. Call the
library with function FOO() and it won't package, producing this error message:

... 'FOO' : function does not take 0 arguments

Call the library as:

 mwArray junk;
 FOO(junk);

or

 FOO((mwArray)NULL);

At runtime, nargin=1. In MATLAB, FOO() is nargin=0 and FOO([]) is nargin=1.

C++ Interfaces for MATLAB Functions Using varargin and varargout

The C++ mlx interface for MATLAB functions does not change even if the functions use varargin or
varargout. However, the C++ function interface (the second set of functions) changes if the
MATLAB function is using varargin or varargout.

For examples, view the generated code for various MATLAB function signatures that use varargin
or varargout.

Note For simplicity, only the relevant part of the generated C++ function signature is shown in the
following examples.

 Call MATLAB Compiler SDK API Functions from C/C++

2-29

function varargout = foo(varargin)

For this MATLAB function, the following C++ overloaded functions are generated:

No input no output:
void foo()

Only inputs:
void foo(const mwArray& varargin)

Only outputs:
void foo(int nargout, mwArray& varargout)

Most generic form that has both inputs and outputs:
void foo(int nargout, mwArray& varargout,
 const mwArray& varargin)

function varargout = foo(i1, i2, varargin)

For this MATLAB function, the following C++ overloaded functions are generated:

Most generic form that has outputs and all the inputs
void foo(int nargout, mwArray& varargout, const
 mwArray& i1, const
 mwArray& i2, const
 mwArray& varargin)

Only inputs:
void foo(const mwArray& i1,
 const mwArray& i2, const mwArray& varargin)

function [o1, o2, varargout] = foo(varargin)

For this MATLAB function, the following C++ overloaded functions are generated:

Most generic form that has all the outputs and inputs
void foo(int nargout, mwArray& o1, mwArray& o2,
 mwArray& varargout,
 const mwArray& varargin)

Only outputs:
void foo(int nargout, mwArray& o1, mwArray& o2,
 mwArray& varargout)

function [o1, o2, varargout] = foo(i1, i2, varargin)

For this MATLAB function, the following C++ overloaded function is generated:

Most generic form that has all the outputs and
 all the inputs
void foo(int nargout, mwArray& o1, mwArray& o2,

mwArray& varargout,
 const mwArray& i1, const mwArray& i2,
 const mwArray& varargin)

2 Libraries

2-30

Retrieving MATLAB Runtime State Information While Using Shared
Libraries
When using shared libraries, you may call functions to retrieve specific information from the MATLAB
Runtime state. For details, see “Set and Retrieve MATLAB Runtime Data for Shared Libraries”.

See Also
mbuild

More About
• “Call a C Shared Library” on page 2-5
• “Compile and Test a MATLAB Generated C Shared Library” on page 2-9
• “Create a C Shared Library with MATLAB Code”
• “Create C/C++ Shared Libraries from Command Line”
• “Implement a C Shared Library with a Driver Application” on page 2-2

 Call MATLAB Compiler SDK API Functions from C/C++

2-31

Memory Management and Cleanup
In this section...
“Overview” on page 2-32
“Passing mxArrays to Shared Libraries” on page 2-32

Overview
Generated C++ code provides consistent garbage collection via the object destructors and the
MATLAB Runtime's internal memory manager optimizes to avoid heap fragmentation.

If memory constraints are still present on your system, try preallocating arrays in MATLAB. This will
reduce the number of calls to the memory manager, and the degree to which the heap fragments.

Passing mxArrays to Shared Libraries
When an mxArray is created in an application which uses the MATLAB Runtime, it is created in the
managed memory space of the MATLAB Runtime.

Therefore, it is very important that you never create mxArrays (or call any other MATLAB function)
before calling mclInitializeApplication.

It is safe to call mxDestroyArray when you no longer need a particular mxArray in your code, even
when the input has been assigned to a persistent or global variable in MATLAB. MATLAB uses
reference counting to ensure that when mxDestroyArray is called, if another reference to the
underlying data still exists, the memory will not be freed. Even if the underlying memory is not freed,
the mxArray passed to mxDestroyArray will no longer be valid.

For more information about mclInitializeApplication and mclTerminateApplication, see
“Call a C Shared Library” on page 2-5.

For more information about mxArray, see “C Matrix API” (MATLAB).

2 Libraries

2-32

Write Applications for macOS
In this section...
“Objective-C/C++ Applications for Apple’s Cocoa API” on page 2-33
“Where’s the Example Code?” on page 2-33
“Preparing Your Apple Xcode Development Environment” on page 2-33
“Build and Run the Sierpinski Application” on page 2-34
“Running the Sierpinski Application” on page 2-35

Objective-C/C++ Applications for Apple’s Cocoa API
Apple Xcode, implemented in the Objective-C language, is used to develop applications using the
Cocoa framework, the native object-oriented API for the Mac OS X operating system.

This article details how to deploy a graphical MATLAB application with Objective C and Cocoa, and
then deploy it using MATLAB Compiler.

Where’s the Example Code?
You can find example Apple Xcode, header, and project files in matlabroot/extern/examples/
compilersdk/c_cpp/triangle/code.

Preparing Your Apple Xcode Development Environment
To run this example, you should have prior experience with the Apple Xcode development
environment and the Cocoa framework.

The example in this article is ready to build and run on page 2-34. However, before you build and
run your own applications, you must do the following (as has been done in our example code on page
2-33):

1 Build the shared library with MATLAB Compiler using either the Library Compiler or mcc.
2 Compile application code against the library’s header file and link the application against the

component library and libmwmclmcrrt. For information about libmwmclmcrrt and MATLAB
Runtime, see “Problems Setting MATLAB Runtime Paths” (MATLAB Compiler).

3 In your Apple Xcode project:

• Specify mcc in the project target (Build Component Library in the example code on page 2-
33).

• Specify target settings in HEADER_SEARCH_PATHS.

• Specify directories containing the library header.
• Specify the path matlabroot/extern/include.
• Define MWINSTALL_ROOT, which establishes the install route using a relative path.

• Set LIBRARY_SEARCH_PATHS to any directories containing the shared library, as well as to
the path matlabroot/runtime/maci64.

 Write Applications for macOS

2-33

Build and Run the Sierpinski Application
In this example, you deploy the graphical Sierpinski function (sierpinski.m, located at
matlabroot/extern/examples/compilersdk/c_cpp/triangle).

function [x, y] = sierpinski(iterations, draw)
% SIERPINSKI Calculate (optionally draw) the points
% in Sierpinski's triangle

% Copyright 2004 The MathWorks, Inc.

 % Three points defining a nice wide triangle
 points = [0.5 0.9 ; 0.1 0.1 ; 0.9 0.1];

 % Select an initial point
 current = rand(1, 2);

 % Create a figure window
 if (draw == true)
 f = figure;
 hold on;
 end

 % Pre-allocate space for the results, to improve performance
 x = zeros(1,iterations);
 y = zeros(1,iterations);

 % Iterate
 for i = 1:iterations

 % Select point at random
 index = floor(rand * 3) + 1;

 % Calculate midpoint between current point and random point
 current(1) = (current(1) + points(index, 1)) / 2;
 current(2) = (current(2) + points(index, 2)) / 2;

 % Plot that point
 if draw, line(current(1),current(2));, end
 x(i) = current(1);
 y(i) = current(2);

 end

 if (draw)
 drawnow;
 end

1 Using the Mac Finder, locate the Apple Xcode project (matlabroot/extern/examples/
compilersdk/c_cpp/triangle/xcode). Copy files to a working directory to run this example,
if needed.

2 Open sierpinski.xcodeproj. The development environment starts.
3 In the Groups and Files pane, select Targets.
4 Click Build and Run. The make file runs that launches MATLAB Compiler (mcc).

2 Libraries

2-34

Running the Sierpinski Application
Run the Sierpinski application from the build output directory. The following GUI appears:

MATLAB Sierpinski Function Implemented in the Mac Cocoa Environment

1 In the Iterations field, enter an integer such as 10000:

 Write Applications for macOS

2-35

2 Click Draw Triangle. The following figure appears:

2 Libraries

2-36

 Write Applications for macOS

2-37

Deployment Process

This chapter tells you how to deploy compiled MATLAB code to end users.

• “Package C/C++ Applications” on page 3-2
• “About the MATLAB Runtime” on page 3-3
• “Install and Configure the MATLAB Runtime” on page 3-4
• “Use Parallel Computing Toolbox in Deployed Applications” on page 3-10
• “Deploy Applications on Network Drives” on page 3-11
• “MATLAB Compiler SDK Deployment Messages” on page 3-12

3

Package C/C++ Applications
1 Gather and package the following files for installation on end user computers:

• MATLAB Runtime installer

See “Download the MATLAB Runtime Installer from the Web” on page 3-4.
• MATLAB generated shared library
• Executable for the application

2 Include directions for installing the MATLAB Runtime.

See “Install and Configure the MATLAB Runtime” on page 3-4.

Note You can distribute applications containing MATLAB generated libraries to any target machine
that has the same operating system as the machine on which the shared library was compiled. If you
want to deploy the same application to a different platform, you must use MATLAB Compiler SDK on
the different platform and completely rebuild the application.

3 Deployment Process

3-2

About the MATLAB Runtime

In this section...
“How is the MATLAB Runtime Different from MATLAB?” on page 3-3
“Performance Considerations and the MATLAB Runtime” on page 3-3

The MATLAB Runtime is a standalone set of shared libraries, MATLAB code, and other files that
enables the execution of MATLAB files on computers without an installed version of MATLAB.
Applications that use artifacts built with MATLAB Compiler SDK require access to an appropriate
version of the MATLAB Runtime to run.

End-users of compiled artifacts without access to MATLAB must install the MATLAB Runtime on their
computers or know the location of a network-installed MATLAB Runtime. The installers generated by
the compiler apps may include the MATLAB Runtime installer. If you compiled your artifact using
mcc, you should direct your end-users to download the MATLAB Runtime installer from the website
https://www.mathworks.com/products/compiler/mcr.

See “Install and Configure the MATLAB Runtime” on page 3-4 for more information.

How is the MATLAB Runtime Different from MATLAB?
The MATLAB Runtime differs from MATLAB in several important ways:

• In the MATLAB Runtime, MATLAB files are encrypted and immutable.
• MATLAB has a desktop graphical interface. The MATLAB Runtime has all the MATLAB

functionality without the graphical interface.
• The MATLAB Runtime is version-specific. You must run your applications with the version of the

MATLAB Runtime associated with the version of MATLAB Compiler SDK with which it was
created. For example, if you compiled an application using version 6.3 (R2016b) of MATLAB
Compiler, users who do not have MATLAB installed must have version 9.1 of the MATLAB Runtime
installed. Use mcrversion to return the version number of the MATLAB Runtime.

• The MATLAB paths in a MATLAB Runtime instance are fixed and cannot be changed. To change
them, you must first customize them within MATLAB.

Performance Considerations and the MATLAB Runtime
MATLAB Compiler SDK was designed to work with a large range of applications that use the MATLAB
programming language. Because of this, run-time libraries are large.

Since the MATLAB Runtime technology provides full support for the MATLAB language, including the
Java programming language, starting a compiled application takes approximately the same amount of
time as starting MATLAB. The amount of resources consumed by the MATLAB Runtime is necessary
in order to retain the power and functionality of a full version of MATLAB.

Calls into the MATLAB Runtime are serialized so calls into the MATLAB Runtime are threadsafe. This
can impact performance.

 About the MATLAB Runtime

3-3

https://www.mathworks.com/products/compiler/matlab-runtime.html

Install and Configure the MATLAB Runtime

In this section...
“Download the MATLAB Runtime Installer from the Web” on page 3-4
“Install the MATLAB Runtime Interactively” on page 3-4
“Install the MATLAB Runtime Non-Interactively” on page 3-5
“Install the MATLAB Runtime without Administrator Rights” on page 3-7
“Multiple MATLAB Runtime Versions on Single Machine” on page 3-7
“MATLAB and MATLAB Runtime on Same Machine” on page 3-7
“Uninstall MATLAB Runtime” on page 3-8

Download the MATLAB Runtime Installer from the Web
Download the MATLAB® Runtime from the website at https://www.mathworks.com/products/
compiler/matlab-runtime.html.

Install the MATLAB Runtime Interactively
To install the MATLAB Runtime:

1 Unzip/Extract the archive containing the MATLAB Runtime installer.

Platform Steps
Windows Unzip the MATLAB Runtime installer. To unzip the installer:

• Right click the zip file MATLAB_Runtime_R2020a_win64.zip
• Select Extract All, and then follow the instructions.

Linux Unzip the MATLAB Runtime installer at the terminal using the unzip
command.

For example, if you are unzipping the R2020a MATLAB Runtime
installer, at the Terminal, type:

unzip MATLAB_Runtime_R2020a_glnxa64.zip

macOS Unzip the MATLAB Runtime installer at the terminal using the unzip
command.

For example, if you are unzipping the R2020a MATLAB Runtime
installer, at the Terminal, type:

unzip MATLAB_Runtime_R2020a_maci64.zip

Note The release part of the installer filename (_R2020a_) will change from one release to the
next.

2 Start the MATLAB Runtime installer.

3 Deployment Process

3-4

https://www.mathworks.com/products/compiler/matlab-runtime.html
https://www.mathworks.com/products/compiler/matlab-runtime.html

Platform Steps
Windows Double-click the file setup.exe from the extracted files to start the

installer.
Linux At the Terminal, type:

sudo ./install

Note On Debian® based Linux distributions, you will need to type:

gksudo ./install

macOS At the Terminal, type:

./install

Note You may need to enter an administrator username and password
after you run ./install.

3 When the MATLAB Runtime installer starts, it displays a dialog box. Read the information and
then click Next to proceed with the installation.

4 Specify the folder in which you want to install the MATLAB Runtime in the Folder Selection
dialog box.

Note On Windows systems, you can have multiple versions of the MATLAB Runtime on your
computer but only one installation for any particular version. If you already have an existing
installation, the MATLAB Runtime installer does not display the Folder Selection dialog box
because you can only overwrite the existing installation in the same folder.

5 Confirm your choices and click Next.

The MATLAB Runtime installer starts copying files into the installation folder.
6 On Linux and macOS platforms, after copying files to your disk, the MATLAB Runtime installer

displays the Product Configuration Notes dialog box. This dialog box contains information
necessary for setting your path environment variables. Copy the path information from this
dialog box and then click Next.

7 Click Finish to exit the installer.

Install the MATLAB Runtime Non-Interactively
To install the MATLAB Runtime without having to interact with the installer dialog boxes, use one of
the MATLAB Runtime installer’s non-interactive modes:

• silent—the installer runs as a background task and does not display any dialog boxes
• automated—the installer displays the dialog boxes but does not wait for user interaction

When run in silent or automated mode, the MATLAB Runtime installer uses default values for
installation options. You can override these defaults by using MATLAB Runtime installer command-
line options or an installer control file.

Note When running in silent or automated mode, the installer overwrites the default installation
location.

 Install and Configure the MATLAB Runtime

3-5

Running the Installer in Silent Mode

To install the MATLAB Runtime in silent mode:

1 Extract the contents of the MATLAB Runtime installer file to a temporary folder, called $temp in
this documentation.

Note On Windows systems, manually extract the contents of the installer file.
2 Run the MATLAB Runtime installer, specifying the -mode option and -agreeToLicense yes on

the command line.

Note On most platforms, the installer is located at the root of the folder into which the archive
was extracted. On Windows 64, the installer is located in the archives bin folder.

Platform Command
Windows setup -mode silent -agreeToLicense

yes
Linux ./install -mode silent -

agreeToLicense yes
macOS ./install -mode silent -

agreeToLicense yes

Note If you do not include the -agreeToLicense yes the installer will not install the MATLAB
Runtime.

3 View a log of the installation.

On Windows systems, the MATLAB Runtime installer creates a log file, named
mathworks_username.log, where username is your Windows log-in name, in the location
defined by your TEMP environment variable.

4 On Linux and macOS systems, specify the path variable. The MATLAB Runtime installer displays
the log information for Linux and macOS systems at the command prompt, unless you redirect it
to a file.

Customizing a Non-Interactive Installation

When run in one of the non-interactive modes, the installer will use the default values unless told to
do otherwise. Like the MATLAB installer, the MATLAB Runtime installer accepts a number of
command line options that modify the default installation properties.

Option Description
-destinationFolder Specifies where the MATLAB Runtime will be

installed.
-outputFile Specifies where the installation log file is written.
-automatedModeTimeout Specifies how long, in milliseconds, that the

dialog boxes are displayed when run in automatic
mode.

3 Deployment Process

3-6

Option Description
-inputFile Specifies an installer control file with the values

for all of the above options.

Note The MATLAB Runtime installer archive includes an example installer control file called
installer_input.txt. This file contains all of the options available for a full MATLAB installation.
Only the options listed in this section are valid for the MATLAB Runtime installer.

Install the MATLAB Runtime without Administrator Rights
To install the MATLAB Runtime as a user without administrator rights on Windows:

1 Use the MATLAB Runtime installer to install it on a Windows machine where you have
administrator rights.

2 Copy the folder where the MATLAB Runtime was installed to the machine without administrator
rights. You can compress the folder into zip file and distribute to multiple users.

3 On the machine without administrator rights, add the mcr_root\runtime\arch directory onto
the user’s path environment variable.

Note You don’t need administrator rights for adding directories to a user’s path environment
variable.

Multiple MATLAB Runtime Versions on Single Machine
MCRInstaller supports the installation of multiple versions of the MATLAB Runtime on a target
machine. This allows applications compiled with different versions of the MATLAB Runtime to
execute side by side on the same machine.

If you do not want multiple MATLAB Runtime versions on the target machine, you can remove the
unwanted ones. On Windows, run Add or Remove Programs from the Control Panel to remove any
of the previous versions. On Linux, you manually delete the unwanted MATLAB Runtime. You can
remove unwanted versions before or after installation of a more recent version of the MATLAB
Runtime, as versions can be installed or removed in any order.

MATLAB and MATLAB Runtime on Same Machine
You do not need to install MATLAB Runtime on your machine if your machine has MATLAB installed.
The version of MATLAB should be the same as the version of MATLAB that was used to create the
compiled MATLAB code. Also, to act as the MATLAB Runtime replacement, the MATLAB installation
must include MATLAB Compiler.

You can, however, install the MATLAB Runtime for debugging purposes.

Modifying the Path

If you install MATLAB Runtime on a machine that already has MATLAB on it, you must adjust the
library path according to your needs.

• Windows

 Install and Configure the MATLAB Runtime

3-7

To run deployed MATLAB code against MATLAB Runtime install, mcr_root\ver\runtime
\win64 must appear on your system path before matlabroot\runtime\win64.

If mcr_root\ver\runtime\arch appears first on the compiled application path, the application
uses the files in the MATLAB Runtime install area.

If matlabroot\runtime\arch appears first on the compiled application path, the application
uses the files in the MATLAB installation area.

• Linux

To run deployed MATLAB code against MATLAB Runtime on Linux, the folder <mcr_root>/
runtime/<arch> must appear on your LD_LIBRARY_PATH before matlabroot/runtime/
<arch>.

• macOS

To run deployed MATLAB code on macOS, the <mcr_root>/runtime folder must appear on your
DYLD_LIBRARY_PATH before matlabroot/runtime/<arch>.

To run MATLAB on macOS or Intel® Mac, matlabroot/runtime/<arch> must appear on your
DYLD_LIBRARY_PATH before the <mcr_root>/bin folder.

Uninstall MATLAB Runtime
The method you use to uninstall MATLAB Runtime from your computer varies depending on the type
of computer.

Windows

1 Start the uninstaller.

From the Windows Start menu, search for the Add or Remove Programs control panel, and
double-click MATLAB Runtime in the list.

You can also start the MATLAB Runtime uninstaller from the mcr_root\uninstall\bin\arch
folder, where mcr_root is your MATLAB Runtime installation folder and arch is an architecture-
specific folder, such as win64.

2 Select the MATLAB Runtime from the list of products in the Uninstall Products dialog box.
3 Click Next.
4 Click Finish.

Linux

1 Exit the application.
2 Enter this command at the Linux prompt:

rm -rf mcr_root

where mcr_root represents the name of your top-level MATLAB installation folder.

macOS

1 Exit the application.
2 Navigate to your MATLAB Runtime installation folder. For example, the installation folder might

be named MATLAB_Compiler_Runtime.app in your Applications folder.

3 Deployment Process

3-8

3 Drag your MATLAB Runtime installation folder to the trash, and then select Empty Trash from
the Finder menu.

 Install and Configure the MATLAB Runtime

3-9

Use Parallel Computing Toolbox in Deployed Applications
There are two ways to pass a cluster profile to a standalone application that uses the Parallel
Computing Toolbox:

1 Save the cluster profile to your MATLAB preferences.

The cluster profile will be automatically bundled with the generated application and available to
the Parallel Computing Toolbox code.

2 Embed the cluster profile in the application.

Embed Parallel Computing Toolbox Profile in the Application
To embed a Parallel Computing Toolbox profile in an application, you must ensure that the application
loads a Parallel Computing Toolbox profile. You have two options for loading a profile:

• load the cluster profile in the compiled MATLAB function

function run_parallel_funct
setmcruserdata('ParallelProfile', 'profile');
a = parallel_funct
end

• load the cluster profile in the application calling the MATLAB function

mxArray *key = mxCreateString("ParallelProfile");
mxArray *value = mxCreateString("\usr\userdir\config.settings");
if (!setmcruserdata(key, value))
{
 fprintf(stderr,
 "Could not set MCR user data: \n %s ",
 mclGetLastErrorMessage());
 return -1;
}

When you package and deploy an application that uses Parallel Computing Toolbox you must ensure
that the Parallel Computing Toolbox profile is included along with the application. The profile must
also be placed in the location expected by the application.

3 Deployment Process

3-10

Deploy Applications on Network Drives
You can deploy a compiled application to a network drive so that it can be accessed by all network
users without having them install the MATLAB Runtime on their individual machines.

Note There is no need to perform these steps on a Linux system.

The component registration is in support of Excel® add-ins and COM components, which both run on
Windows only.

Distributing to a Linux network file system is exactly the same as distributing to a local file system.
You only need to set up the LD_LIBRARY_PATH or use scripts which points to the MATLAB Runtime
installation.

1 On any Windows machine, run mcrinstaller function to obtain name of the MATLAB Runtime
Installer executable.

2 Copy the entire MATLAB Runtime installation folder onto a network drive.
3 Copy the compiled application into a separate folder in the network drive and add the path

<mcr_root>\<ver>\runtime\<arch> to all client machines. All network users can then
execute the application.

4 Run vcredist_x86.exe on for 32-bit clients; run vcredist_x64.exe for 64-bit clients.
5 If you are using MATLAB Compiler SDK to create COM objects, register mwcomutil.dll on

every client machine.

To register the DLLs, at the DOS prompt enter

mwregsvr <fully_qualified_pathname\dllname.dll>

These DLLs are located in <mcr_root>\<ver>\runtime\<arch>.

Note These libraries are automatically registered on the machine on which the installer was run.

 Deploy Applications on Network Drives

3-11

MATLAB Compiler SDK Deployment Messages
To enable display of MATLAB Compiler SDK deployment messages, see the MATLAB Desktop Tools
and Environment documentation.

3 Deployment Process

3-12

Distributing Code to an End User

4

MATLAB Runtime Component Cache and Deployable Archive
Embedding

Deployable archive data is automatically embedded directly in shared libraries by default and
extracted to a temporary folder.

Automatic embedding enables usage of the MATLAB Runtime component cache features through
environment variables.

These variables allow you to specify the following:

• Define the default location where you want the deployable archive to be automatically extracted
• Add diagnostic error printing options that can be used when automatically extracting the

deployable archive, for troubleshooting purposes
• Tuning the MATLAB Runtime component cache size for performance reasons.

Use the following environment variables to change these settings.

Environment Variable Purpose Notes
MCR_CACHE_ROOT When set to the location of where

you want the deployable archive to
be extracted, this variable overrides
the default per-user component
cache location. This is true for
embedded .ctf files only.

Does not apply

MCR_CACHE_SIZE When set, this variable overrides
the default component cache size.

The initial limit for this variable is
32M (megabytes). This may,
however, be changed after you have
set the variable the first time. Edit
the file .max_size, which resides
in the file designated by running the
mcrcachedir command, with the
desired cache size limit.

Note If you run mcc specifying conflicting wrapper and target types, the archive will not be
embedded into the generated component. For example, if you run:

mcc -W lib:myLib -T link:exe test.m test.c

the generated test.exe will not have the archive embedded in it, as if you had specified a -C option
to the command line.

Caution Do not extract the files within the.ctf file and place them individually under version
control. Since the .ctf file contains interdependent MATLAB functions and data, the files within it
must be accessed only by accessing the .ctf file. For best results, place the entire .ctf file under
version control.

4 Distributing Code to an End User

4-2

Compiler Commands

This chapter describes mcc, which is the command that invokes the compiler.

5

Compiler Tips
In this section...
“Deploying Applications That Call the Java Native Libraries” on page 5-2
“Using the VER Function in a Compiled MATLAB Application” on page 5-2

Deploying Applications That Call the Java Native Libraries
If your application interacts with Java, you need to specify the search path for native method libraries
by editing librarypath.txt and deploying it.

1 Copy librarypath.txt from matlabroot/toolbox/local/librarypath.txt.
2 Place librarypath.txt in <mcr_root>/<ver>/toolbox/local.

<mcr_root> refers to the complete path where the MATLAB Runtime library archive files are
installed on your machine.

3 Edit librarypath.txt by adding the folder that contains the native library that your
application's Java code needs to load.

Using the VER Function in a Compiled MATLAB Application
When you use the VER function in a compiled MATLAB application, it will perform with the same
functionality as if you had called it from MATLAB. However, be aware that when using VER in a
compiled MATLAB application, only version information for toolboxes which the compiled application
uses will be displayed.

5 Compiler Commands

5-2

Troubleshooting

• “Common Issues” on page 6-2
• “Compilation Failures” on page 6-3
• “Testing Failures” on page 6-5
• “Application Deployment Failures” on page 6-8
• “Troubleshoot mbuild” on page 6-10
• “Deployed Applications” on page 6-11

6

Common Issues
Some of the most common issues encountered when using MATLAB Compiler SDK generated shared
libraries are:

• Compilation fails with an error message. This can indicate a failure during any one of the
internal steps involved in producing the final output.

• Compilation succeeds but the application does not execute because required DLLs are
not found. All shared libraries required for your standalone executable or shared library are
contained in the MATLAB Runtime. Installing the MATLAB Runtime is required for any of the
deployment targets.

• Compilation succeeds, and the resultant file starts to execute but then produces errors
and/or generates a crash dump.

• The compiled program executes on the machine where it was compiled but not on other
machines.

• The compiled program executes on some machines and not others.

6 Troubleshooting

6-2

Compilation Failures
You typically compile your MATLAB code on a development machine, test the resulting executable on
that machine, and deploy the executable and MATLAB Runtime to a test or customer machine without
MATLAB. The compilation process performs dependency analysis on your MATLAB code, creates an
encrypted archive of your code and required toolbox code, generates wrapper code, and compiles the
wrapper code into an executable. If your application fails to build an executable, the following
questions may help you isolate the problem.

Is your installed compiler supported by MATLAB Compiler SDK?

See the current list of supported compilers at http://www.mathworks.com/support/
compilers/current_release/.

Are you compiling within or outside of MATLAB?

mcc can be invoked from the operating system command line or from the MATLAB prompt. When you
run mcc inside the MATLAB environment, MATLAB will modify environment variables in its
environment as necessary so mcc will run. Issues with PATH, LD_LIBRARY_PATH, or other
environment variables seen at the operating system command line are often not seen at the MATLAB
prompt. The environment that MATLAB uses for mcc can be listed at the MATLAB prompt. For
example:

>>!set

lists the environment on Windows platforms.

>>!printenv

lists the environment on UNIX platforms. Using this path allows you to use mcc from the operating
system command line.

Have you tried to compile any of the C/C++ examples in MATLAB Compiler SDK help?

The source code for all C/C++ examples is provided with MATLAB Compiler SDK and is located in
matlabroot\extern\examples\compilersdk, where matlabroot is the root folder of your
MATLAB installation.

Is your MATLAB object failing to load?

If your MATLAB object fails to load, it is typically a result of the MATLAB Runtime not finding
required class definitions.

When working with MATLAB objects that are loaded from a MAT file, remember to include the
following statement in your MATLAB function:

%#function class_constructor

Using the %#function pragma forces dependency analyzer to load needed class definitions, enabling
the MATLAB Runtime to successfully load the object.

If you are compiling a driver application, are you using mbuild?

MathWorks recommends and supports using mbuild to compile your driver application. mbuild is
designed and tested to correctly build driver applications. It will ensure that all MATLAB header files

 Compilation Failures

6-3

https://www.mathworks.com/support/compilers.html
https://www.mathworks.com/support/compilers.html

are found by the C/C++ compiler, and that all necessary libraries are specified and found by the
linker.

Are you trying to compile your driver application using Microsoft Visual Studio or another
IDE?

If you are using an IDE, in addition to linking to the generated export library, you need to include an
additional dependency to mclmcrrt.lib. This library is provided for all supported Microsoft
compilers in matlabroot\extern\lib\arch\microsoft.

Are you importing the correct versions of import libraries?

If you have multiple versions of MATLAB installed on your machine, it is possible that an older or
incompatible version of the library is referenced. Ensure that the only MATLAB library that you are
linking to is mclmcrrt.lib and that it is referenced from the appropriate folder.

Are you able to compile the matrixdriver example?

Typically, if you cannot compile the examples in the documentation, it indicates an issue with the
installation of MATLAB or your system compiler. See “Compile and Test a MATLAB Generated C
Shared Library” on page 2-9 and “Integrate C++ Shared Libraries” on page 2-11 for these examples.

Do you get the MATLAB:I18n:InconsistentLocale Warning?

The warning message

MATLAB:I18n:InconsistentLocale - The system locale setting,
system_locale_name, is different from the user locale
setting, user_locale_name

indicates a mismatch between locale setting on Microsoft Windows systems. This may affect your
ability to display certain characters. For information about changing the locale settings, see your
operating system Help.

6 Troubleshooting

6-4

Testing Failures
After you have successfully compiled your application, the next step is to test it on a development
machine and deploy it on a target machine. Typically the target machine does not have a MATLAB
installation and requires that the MATLAB Runtime be installed. A distribution includes all of the files
that are required by your application to run, which include the executable, deployable archive and
the MATLAB Runtime.

See “Package C/C++ Applications” on page 3-2 for information on distribution contents for specific
application types and platforms.

Test the application on the development machine by running the application against the MATLAB
Runtime shipped with MATLAB Compiler SDK. This will verify that library dependencies are correct,
that the deployable archive can be extracted and that all MATLAB code, MEX—files and support files
required by the application have been included in the archive. If you encounter errors testing your
application, the questions in the column to the right may help you isolate the problem.

Are you able to execute the application from MATLAB?

On the development machine, you can test your application's execution by issuing !application-
name at the MATLAB prompt. If your application executes within MATLAB but not from outside, this
can indicate an issue with the one of the system variables:

• PATH
• LD_LIBRARY_PATH
• DYLD_LIBRARY_PATH

Does the application begin execution and result in MATLAB or other errors?

Ensure that you included all necessary files when compiling your application (see the readme.txt
file generated with your compilation for more details).

Functions that are called from your main MATLAB file are automatically included by MATLAB
Compiler SDK as are functions included using the %#function pragma. However, functions that are
not explicitly called, for example through EVAL, need to be included at compilation using the -a
switch of the mcc command. Also, any support files like .mat, .txt, or .html files need to be added
to the archive with the -a switch. There is a limitation on the functionality of MATLAB and associated
toolboxes that can be compiled. Check the documentation to see that the functions used in your
application's MATLAB files are valid. Check the file mccExcludedFiles.log on the development
machine. This file lists all functions called from your application that cannot be compiled.

Do you have multiple MATLAB versions installed?

Executables generated using MATLAB Compiler SDK components are designed to run in an
environment where multiple versions of MATLAB are installed. Some older versions of MATLAB may
not be fully compatible with this architecture.

On Windows, ensure that the matlabroot\runtime\win64 of the version of MATLAB in which you
are compiling appears ahead of matlabroot\runtime\win64 of other versions of MATLAB installed
on the PATH environment variable on your machine.

Similarly, on UNIX, ensure that the dynamic library paths (LD_LIBRARY_PATH on Linux) match. Do
this by comparing the outputs of !printenv at the MATLAB prompt and printenv at the shell
prompt. Using this path allows you to use mcc from the operating system command line.

 Testing Failures

6-5

If you are testing a shared library and driver application, did you install the MATLAB
Runtime?

All shared libraries required for a shared library are contained in the MATLAB Runtime. Installing the
MATLAB Runtime is required for any of the deployment targets.

Do you receive an error message about a missing DLL?

Error messages indicating missing DLLs such as mclmcrrt7x.dll or mclmcrrt7x.so are generally
caused by incorrect installation of the MATLAB Runtime. It is also possible that the MATLAB Runtime
is installed correctly, but that the PATH,LD_LIBRARY_PATH, or DYLD_LIBRARY_PATH variables are
set incorrectly. For information on installing the MATLAB Runtime on a deployment machine, see
“Install and Configure the MATLAB Runtime” on page 3-4.

Caution Do not solve these problems by moving libraries or other files within the MATLAB Runtime
folder structure. The MATLAB Runtime system is designed to accommodate different MATLAB
Runtime versions operating on the same machine. The folder structure is an important part of this
feature.

Are you receiving errors when trying to run the shared library application?

Calling MATLAB Compiler SDK generated shared libraries requires correct initialization and
termination in addition to library calls themselves. For information on calling shared libraries, see
“Call MATLAB Compiler SDK API Functions from C/C++” on page 2-24.

Some key points to consider to avoid errors at run time:

• Ensure that the calls to mclinitializeApplication and libnameInitialize are successful.
The first function enables construction of MATLAB Runtime instances. The second creates the
MATLAB Runtime instance required by the library named libname. If these calls are not
successful, your application will not execute.

• Do not use any mw- or mx-functions before calling mclinitializeApplication. This includes
static and global variables that are initialized at program start. Referencing mw- or mx-functions
before initialization results in undefined behavior.

• Do not re-initialize (call mclinitializeApplication) after terminating it with
mclTerminateApplication. The mclinitializeApplication andlibnameInitialize
functions should be called only once.

• Ensure that you do not have any library calls after mclTerminateApplication.
• Ensure that you are using the correct syntax to call the library and its functions.

Does your system’s graphics card support the graphics application?

In situations where the existing hardware graphics card does not support the graphics application,
you should use software OpenGL®. OpenGL libraries are visible for an application by appending
matlab/sys/opengl/lib/arch to the LD_LIBRARY_PATH. For example:

setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH:matlab/sys/opengl/lib/arch

Is OpenGL properly installed on your system?

When searching for OpenGL libraries, the MATLAB Runtime first looks on the system library path. If
OpenGL is not found there, it will use the LD_LIBRARY_PATH environment variable to locate the

6 Troubleshooting

6-6

libraries. If you are getting failures due to the OpenGL libraries not being found, you can append the
location of the OpenGL libraries to the LD_LIBRARY_PATH environment variable. For example:

setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH:matlab/sys/opengl/lib/glnxa64

 Testing Failures

6-7

Application Deployment Failures
After the application is working on the test machine, failures can be isolated in end-user deployment.
The end users of your application need to install the MATLAB Runtime on their machines. The
MATLAB Runtime includes a set of shared libraries that provides support for all features of MATLAB.
If your application fails during end-user deployment, the following questions in the column to the
right may help you isolate the problem.

Note There are a number of reasons why your application might not deploy to end users, after
running successfully in a test environment. For a detailed list of guidelines for writing MATLAB code
that can be consumed by end users, see “Write Deployable MATLAB Code”

Is the MATLAB Runtime installed?

Installing the MATLAB Runtime is required for any of the deployment targets. See “Install and
Configure the MATLAB Runtime” on page 3-4 for complete information.

If running on UNIX or Mac, did you update the dynamic library path after installing the
MATLAB Runtime?

For information on installing the MATLAB Runtime on a deployment machine, see “Install and
Configure the MATLAB Runtime” on page 3-4.

Do you receive an error message about a missing DLL?

Error messages indicating missing DLLs such as mclmcrrt7x.dll or mclmcrrt7x.so are generally
caused by incorrect installation of the MATLAB Runtime. It is also possible that the MATLAB Runtime
is installed correctly, but that the PATH, LD_LIBRARY_PATH, or DYLD_LIBRARY_PATH variables are
set incorrectly. For information on installing the MATLAB Runtime on a deployment machine, see
“Install and Configure the MATLAB Runtime” on page 3-4.

Caution Do not solve these problems by moving libraries or other files within the MATLAB Runtime
folder structure. The MATLAB Runtime system is designed to accommodate different MATLAB
Runtime versions operating on the same machine. The folder structure is an important part of this
feature.

Do you have write access to the necessary folders?

The first operation attempted by an application with compiled MATLAB code is extraction of the
deployable archive. If the archive is not extracted, the application cannot access the compiled
MATLAB code and the application fails.

There are three possible folders where the deployable archive is extracted:

• If the deployable archive is embedded and you are using the default environment settings, the
archive extracts into the current user’s temp folder.

• If the deployable archive is embedded and you set the environment variable MCR_CACHE_ROOT,
the archive extracts into the folder specified by MCR_CACHE_ROOT.

6 Troubleshooting

6-8

• If the deployable archive is not embedded, the archive extracts into the current folder of the
component.

 Application Deployment Failures

6-9

Troubleshoot mbuild
This section identifies some of the more common problems that might occur when configuring
mbuild to create standalone applications.

Options File Not Writable. When you run mbuild -setup, mbuild makes a copy of the
appropriate options file and writes some information to it. If the options file is not writable, you are
asked if you want to overwrite the existing options file. If you choose to do so, the existing options file
is copied to a new location and a new options file is created.

Directory or File Not Writeable. If a destination folder or file is not writable, ensure that the
permissions are properly set. In certain cases, make sure that the file is not in use.

mbuild Generates Errors. If you run mbuild filename and get errors, it may be because you
are not using the proper options file. Run mbuild -setup to ensure proper compiler and linker
settings.

Compiler and/or Linker Not Found. On Windows, if you get errors such as unrecognized
command or file not found, make sure the command-line tools are installed and the path and
other environment variables are set correctly in the options file. For Microsoft Visual Studio®, for
example, make sure to run vcvars32.bat (MSVC 6.x and earlier) or vsvars32.bat (MSVC 8.x and
later).

mbuild Not a Recognized Command. If mbuild is not recognized, verify that matlabroot\bin
is in your path. On UNIX, it may be necessary to rehash.

mbuild Works from the Shell But Not from MATLAB (UNIX). If the command

mcc -m hello

works from the UNIX command prompt but not from the MATLAB prompt, you may have a problem
with your .cshrc file. When MATLAB launches a new C shell to perform compilations, it executes
the .cshrc script. If this script causes unexpected changes to the PATH environment variable, an
error may occur. You can test this before starting MATLAB by performing the following:

setenv SHELL /bin/sh

If this works correctly, then you should check your .cshrc file for problems setting the PATH
environment variable.

Internal Error when Using mbuild -setup (Windows). Some antivirus software packages may
conflict with the mbuild-setup process. If you get an error message during mbuild -setup of the
following form

mex.bat: internal error in sub get_compiler_info(): don't
recognize <string>

then you need to disable your antivirus software temporarily and rerun mbuild-setup. After you
have successfully run the setup option, you can re-enable your antivirus software.

Verification of mbuild Fails. If none of the previous solutions addresses your difficulty with
mbuild, contact Technical Support at MathWorks at http://www.mathworks.com/
contact_TS.html.

6 Troubleshooting

6-10

https://www.mathworks.com/support/contact_us.html
https://www.mathworks.com/support/contact_us.html

Deployed Applications
Checking access to X display <IP-address>:0.0 . . . If no response hit ^C and fix host or
access control to host. Otherwise, checkout any error messages that follow and fix . . .
Successful. . . . This message can be ignored.

??? Error: File: /home/username/<MATLAB file_name>Line: 1651 Column: 8 Arguments to
IMPORT must either end with ".*" or else specify a fully qualified class name:
"<class_name>" fails this test. The import statement is referencing a Java class
(<class_name>) that MATLAB Compiler SDK (if the error occurs at compile time) or the MATLAB
Runtime (if the error occurs at run time) cannot find. To work around this, ensure that the JAR file
that contains the Java class is stored in a folder that is on the Java class path. (See matlabroot/
toolbox/local/classpath.txt for the class path.) If the error occurs at run time, the classpath
is stored in matlabroot/toolbox/local/classpath.txt when running on the development
machine. It is stored in <mcr_root>/toolbox/local/classpath.txt when running on a target
machine.

Undefined function or variable 'matlabrc'. When MATLAB or the MATLAB Runtime starts, they
attempt to execute the MATLAB file matlabrc.m. This message means that this file cannot be found.
To work around this, try each of these suggestions in this order:

• Ensure that your application runs in MATLAB (uncompiled) without this error.
• Ensure that MATLAB starts up without this error.
• Verify that the generated deployable archive contains a file called matlabrc.m.
• Verify that the generated code (in the *_mcc_component_data.c* file) adds the deployable

archive folder containing matlabrc.m to the MATLAB Runtime path.
• Delete the *_mcr folder and rerun the application.
• Recompile the application.

Error: library mclmcrrt76.dll not found. This error can occur for the following reasons:

• The machine on which you are trying to run the application an different, incompatible version of
the MATLAB Runtime installed on it than the one the application was originally built with.

• You are not running a version of MATLAB Compiler SDK compatible with the MATLAB Runtime
version the application was built with.

To solve this problem, on the deployment machine, install the version of MATLAB you used to build
the application.

Invalid .NET Framework.\n Either the specified framework was not found or is not currently
supported. This error occurs when the .NET Framework version your application is specifying
(represented by n) is not supported by the current version of MATLAB Compiler SDK.

System.AccessViolationException: Attempted to read or write protected memory. The
message:

System.ArgumentException: Generate Queries
 threw General Exception:
System.AccessViolationException: Attempted to
 read or write protected memory.
 This is often an indication that other memory is corrupt.

 Deployed Applications

6-11

indicates a library initialization error caused by a Microsoft Visual Studio project linked against a
MCLMCRRT7XX.DLL placed outside matlabroot.

6 Troubleshooting

6-12

Reference Information

• “MATLAB Runtime Path Settings for Development and Testing” on page 7-2
• “MATLAB Runtime Path Settings for Run-Time Deployment” on page 7-4
• “MATLAB Compiler SDK Licensing” on page 7-6
• “Deployment Product Terms” on page 7-7

7

MATLAB Runtime Path Settings for Development and Testing
In this section...
“Path for Java Development on All Platforms” on page 7-2
“Path Modifications Required for Accessibility” on page 7-2
“Windows Settings for Development and Testing” on page 7-2
“Linux Settings for Development and Testing” on page 7-2
“OS X Settings for Development and Testing” on page 7-2

Path for Java Development on All Platforms
There are additional requirements when programming in the Java programming language. For more
information see “Configure Your Java Environment”.

Path Modifications Required for Accessibility
In order to use some screen-readers or assistive technologies, such as JAWS®, you must add the
following DLLs to your Windows path:

matlabroot\sys\java\jre\arch\jre\bin\JavaAccessBridge.dll
matlabroot\sys\java\jre\arch\jre\bin\WindowsAccessBridge.dll

You may not be able to use such technologies without doing so.

Windows Settings for Development and Testing
When programming with compiled MATLAB code, add the following folder to your system PATH
environment variable:

matlabroot\runtime\win32|win64

Linux Settings for Development and Testing
Add the following platform-specific folders to your dynamic library path.

Note For readability, the following commands appear on separate lines, but you must enter each
setenv command on one line.

setenv LD_LIBRARY_PATH
 matlabroot/runtime/glnxa64:
 matlabroot/bin/glnxa64:
 matlabroot/sys/os/glnxa64:
 matlabroot/sys/opengl/lib/glnxa64

OS X Settings for Development and Testing
Add the following platform-specific folders to your dynamic library path.

7 Reference Information

7-2

Note For readability, the following commands appear on separate lines, but you must enter each
setenv command on one line.

setenv DYLD_LIBRARY_PATH
 matlabroot/runtime/maci64:
 matlabroot/bin/maci64:
 matlabroot/sys/os/maci64:

 MATLAB Runtime Path Settings for Development and Testing

7-3

MATLAB Runtime Path Settings for Run-Time Deployment

In this section...
“General Path Guidelines” on page 7-4
“Path for Java Applications on All Platforms” on page 7-4
“Windows Path for Run-Time Deployment” on page 7-4
“Linux Paths for Run-Time Deployment” on page 7-5
“OS X Paths for Run-Time Deployment” on page 7-5

General Path Guidelines
Regardless of platform, be aware of the following guidelines with regards to placing specific folders
on the path:

• Always avoid including arch on the path. Failure to do so may inhibit ability to run multiple
MATLAB Runtime instances.

• Ideally, set the environment in a separate shell script to avoid run-time errors caused by path-
related issues.

Path for Java Applications on All Platforms
When your users run applications that contain compiled MATLAB code, you must instruct them to set
the path so that the system can find the MATLAB Runtime.

Note When you deploy a Java application to end users, they must set the class path on the target
machine.

The system needs to find .jar files containing the MATLAB libraries. To tell the system how to locate
the .jar files it needs, specify a classpath either in the javac command or in your system
environment variables.

Windows Path for Run-Time Deployment
The following folder should be added to the system path:

mcr_root\version\runtime\win64

mcr_root refers to the complete path where the MATLAB Runtime library archive files are installed
on the machine where the application is to be run.

mcr_root is version specific; you must determine the path after you install the MATLAB Runtime.

Note If you are running the MATLAB Runtime installer on a shared folder, be aware that other users
of the share may need to alter their system configuration.

7 Reference Information

7-4

Linux Paths for Run-Time Deployment
Use these setenv commands to set your MATLAB Runtime paths.
setenv LD_LIBRARY_PATH
 mcr_root/version/runtime/glnxa64:
 mcr_root/version/bin/glnxa64:
 mcr_root/version/sys/os/glnxa64:
 mcr_root/version/sys/opengl/lib/glnxa64

OS X Paths for Run-Time Deployment
Use these setenv commands to set your MATLAB Runtime paths.
setenv DYLD_LIBRARY_PATH
 mcr_root/version/runtime/maci64:
 mcr_root/version/bin/maci64:
 mcr_root/version/sys/os/maci64

 MATLAB Runtime Path Settings for Run-Time Deployment

7-5

MATLAB Compiler SDK Licensing

Use MATLAB Compiler SDK Licenses for Development
You can run the MATLAB Compiler SDK compiler from the MATLAB command prompt or the system
prompt.

MATLAB Compiler SDK uses a lingering license. This means that when the MATLAB Compiler SDK
license is checked out, a timer is started. When that timer reaches 30 minutes, the license key is
returned to the license pool. The license key will not be returned until that 30 minutes is up,
regardless of whether mcc has exited or not.

Each time a compiler command is issued, the timer is reset.

Running MATLAB Compiler SDK in MATLAB Mode

When you run MATLAB Compiler SDK from “inside” of the MATLAB environment, that is, you run mcc
from the MATLAB command prompt, you hold the MATLAB Compiler SDK license as long as MATLAB
remains open. To give up the MATLAB Compiler SDK license, exit MATLAB.

Running MATLAB Compiler SDK in Standalone Mode

If you run MATLAB Compiler SDK from a DOS or UNIX prompt, you are running from “outside” of
MATLAB. In this case, MATLAB Compiler SDK

• Does not require MATLAB to be running on the system where MATLAB Compiler SDK is running
• Gives the user a dedicated 30-minute time allotment during which the user has complete

ownership over a license to MATLAB Compiler SDK

Each time a user requests MATLAB Compiler SDK, the user begins a 30-minute time period as the
sole owner of the MATLAB Compiler SDK license. Anytime during the 30-minute segment, if the same
user requests MATLAB Compiler SDK, the user gets a new 30-minute allotment. When the 30-minute
interval has elapsed, if a different user requests MATLAB Compiler SDK, the new user gets the next
30-minute interval.

When a user requests MATLAB Compiler SDK and a license is not available, the user receives the
message

Error: Could not check out a Compiler License.

This message is given when no licenses are available. As long as licenses are available, the user gets
the license and no message is displayed. The best way to guarantee that all MATLAB Compiler SDK
users have constant access to MATLAB Compiler SDK is to have an adequate supply of licenses for
your users.

7 Reference Information

7-6

Deployment Product Terms
A

Add-in — A Microsoft Excel add-in is an executable piece of code that can be actively integrated into
a Microsoft Excel application. Add-ins are front-ends for COM components, usually written in some
form of Microsoft Visual Basic®.

Application program interface (API) — A set of classes, methods, and interfaces that is used to
develop software applications. Typically an API is used to provide access to specific functionality. See
MWArray.

Application — An end user-system into which a deployed functions or solution is ultimately
integrated. Typically, the end goal for the deployment customer is integration of a deployed MATLAB
function into a larger enterprise environment application. The deployment products prepare the
MATLAB function for integration by wrapping MATLAB code with enterprise-compatible source code,
such as C, C++, C# (.NET), F#, and Java code.

Assembly — An executable bundle of code, especially in .NET.

B

Binary — See Executable.

Boxed Types — Data types used to wrap opaque C structures.

Build — See Compile.

C

Class — A user-defined type used in C++, C#, and Java, among other object-oriented languages, that
is a prototype for an object in an object-oriented language. It is analogous to a derived type in a
procedural language. A class is a set of objects which share a common structure and behavior.
Classes relate in a class hierarchy. One class is a specialization (a subclass) of another (one of its
superclasses) or comprises other classes. Some classes use other classes in a client-server
relationship. Abstract classes have no members, and concrete classes have one or more members.
Differs from a MATLAB class

Compile — In MATLAB Compiler and MATLAB Compiler SDK, to compile MATLAB code involves
generating a binary that wraps around MATLAB code, enabling it to execute in various computing
environments. For example, when MATLAB code is compiled into a Java package, a Java wrapper
provides Java code that enables the MATLAB code to execute in a Java environment.

COM component — In MATLAB Compiler, the executable back-end code behind a Microsoft Excel
add-in. In MATLAB Compiler SDK, an executable component, to be integrated with Microsoft COM
applications.

Console application — Any application that is executed from a system command prompt window.

D

Data Marshaling — Data conversion, usually from one type to another. Unless a MATLAB deployment
customer is using type-safe interfaces, data marshaling—as from mathematical data types to
MathWorks data types such as represented by the MWArray API—must be performed manually, often
at great cost.

 Deployment Product Terms

7-7

Deploy — The act of integrating MATLAB code into a larger-scale computing environment, usually to
an enterprise application, and often to end users.

Deployable archive — The deployable archive is embedded by default in each binary generated by
MATLAB Compiler or MATLAB Compiler SDK. It houses the deployable package. All MATLAB-based
content in the deployable archive uses the Advanced Encryption Standard (AES) cryptosystem. See
“Additional Details” (MATLAB Compiler).

DLL — Dynamic link library. Microsoft's implementation of the shared library concept for Windows.
Using DLLs is much preferred over the previous technology of static (or non-dynamic) libraries,
which had to be manually linked and updated.

E

Empties — Arrays of zero (0) dimensions.

Executable — An executable bundle of code, made up of binary bits (zeros and ones) and sometimes
called a binary.

F

Fields — For this definition in the context of MATLAB Data Structures, see Structs.

Fields and Properties — In the context of .NET, Fields are specialized classes used to hold data.
Properties allow users to access class variables as if they were accessing member fields directly,
while actually implementing that access through a class method.

I

Integration — Combining deployed MATLAB code's functionality with functionality that currently
exists in an enterprise application. For example, a customer creates a mathematical model to forecast
trends in certain commodities markets. In order to use this model in a larger-scale financial
application (one written with the Microsoft .NET Framework, for instance) the deployed financial
model must be integrated with existing C# applications, run in the .NET enterprise environment.

Instance — For the definition of this term in context of MATLAB Production Server™ software, see
MATLAB Production Server Server Instance.

J

JAR — Java archive. In computing software, a JAR file (or Java Archive) aggregates many files into
one. Software developers use JARs to distribute Java applications or libraries, in the form of classes
and associated metadata and resources (text, images, etc.). Computer users can create or extract JAR
files using the jar command that comes with a Java Development Kit (JDK).

Java-MATLAB Interface — Known as the JMI Interface, this is the Java interface built into MATLAB
software.

JDK — The Java Development Kit is a product which provides the environment required for
programming in Java.

JMI Interface — see Java-MATLAB Interface.

JRE — Java Run-Time Environment is the part of the Java Development Kit (JDK) required to run Java
programs. It comprises the Java Virtual Machine, the Java platform core classes, and supporting files.

7 Reference Information

7-8

It does not include the compiler, debugger, or other tools present in the JDK™. The JRE™ is the
smallest set of executables and files that constitute the standard Java platform.

M

Magic Square — A square array of integers arranged so that their sum is the same when added
vertically, horizontally, or diagonally.

MATLAB Runtime — An execution engine made up of the same shared libraries. MATLAB uses these
libraries to enable the execution of MATLAB files on systems without an installed version of MATLAB.

MATLAB Runtime singleton — See Shared MATLAB Runtime instance.

MATLAB Runtime workers — A MATLAB Runtime session. Using MATLAB Production Server
software, you have the option of specifying more than one MATLAB Runtime session, using the --
num-workers options in the server configurations file.

MATLAB Production Server Client — In the MATLAB Production Server software, clients are
applications written in a language supported by MATLAB Production Server that call deployed
functions hosted on a server.

MATLAB Production Server Configuration — An instance of the MATLAB Production Server
containing at least one server and one client. Each configuration of the software usually contains a
unique set of values in the server configuration file, main_config (MATLAB Production Server).

MATLAB Production Server Server Instance — A logical server configuration created using the mps-
new command in MATLAB Production Server software.

MATLAB Production Server Software — Product for server/client deployment of MATLAB programs
within your production systems, enabling you to incorporate numerical analytics in enterprise
applications. When you use this software, web, database, and enterprise applications connect to
MATLAB programs running on MATLAB Production Server via a lightweight client library, isolating
the MATLAB programs from your production system. MATLAB Production Server software consists of
one or more servers and clients.

Marshaling — See Data Marshaling.

mbuild — MATLAB Compiler SDK command that compiles and links C and C++ source files into
standalone applications or shared libraries. For more information, see the mbuild function reference
page.

mcc — The MATLAB command that invokes the compiler. It is the command-line equivalent of using
the compiler apps.

Method Attribute — In the context of .NET, a mechanism used to specify declarative information to
a .NET class. For example, in the context of client programming with MATLAB Production Server
software, you specify method attributes to define MATLAB structures for input and output processing.

mxArray interface — The MATLAB data type containing all MATLAB representations of standard
mathematical data types.

MWArray interface — A proxy to mxArray. An application program interface (API) for exchanging
data between your application and MATLAB. Using MWArray, you marshal data from traditional
mathematical types to a form that can be processed and understood by MATLAB data type mxArray.

 Deployment Product Terms

7-9

There are different implementations of the MWArray proxy for each application programming
language.

P

Package — The act of bundling the deployed MATLAB code, along with the MATLAB Runtime and
other files, into an installer that can be distributed to others. The compiler apps place the installer in
the for_redistribution subfolder. In addition to the installer, the compiler apps generate a
number of lose artifacts that can be used for testing or building a custom installer.

PID File — See Process Identification File (PID File).

Pool — A pool of threads, in the context of server management using MATLAB Production Server
software. Servers created with the software do not allocate a unique thread to each client connection.
Rather, when data is available on a connection, the required processing is scheduled on a pool, or
group, of available threads. The server configuration file option --num-threads sets the size of that
pool (the number of available request-processing threads) in the master server process.

Process Identification File (PID File) — A file that documents informational and error messages
relating to a running server instance of MATLAB Production Server software.

Program — A bundle of code that is executed to achieve a purpose. Programs usually are written to
automate repetitive operations through computer processing. Enterprise system applications usually
consist of hundreds or even thousands of smaller programs.

Properties — For this definition in the context of .NET, see Fields and Properties.

Proxy — A software design pattern typically using a class, which functions as an interface to
something else. For example, MWArray is a proxy for programmers who need to access the
underlying type mxArray.

S

Server Instance — See MATLAB Production Server Server Instance.

Shared Library — Groups of files that reside in one space on disk or memory for fast loading into
Windows applications. Dynamic-link libraries (DLLs) are Microsoft's implementation of the shared
library concept for Microsoft Windows.

Shared MATLAB Runtime instance — When using MATLAB Compiler SDK, you can create a shared
MATLAB Runtime instance, also known as a singleton. When you invoke MATLAB Compiler with the -
S option through the compiler (using either mcc or a compiler app), a single MATLAB Runtime
instance is created for each COM component or Java package in an application. You reuse this
instance by sharing it among all subsequent class instances. Such sharing results in more efficient
memory usage and eliminates the MATLAB Runtime startup cost in each subsequent class
instantiation. All class instances share a single MATLAB workspace and share global variables in the
deployed MATLAB files. MATLAB Compiler SDK creates singletons by default for .NET assemblies.
MATLAB Compiler creates singletons by default for the COM components used by the Excel add-ins.

State — The present condition of MATLAB, or the MATLAB Runtime. MATLAB functions often carry
state in the form of variable values. The MATLAB workspace itself also maintains information about
global variables and path settings. When deploying functions that carry state, you must often take
additional steps to ensure state retention when deploying applications that use such functions.

7 Reference Information

7-10

Structs — MATLAB Structures. Structs are MATLAB arrays with elements that you access using
textual field designators. Fields are data containers that store data of a specific MATLAB type.

System Compiler — A key part of Interactive Development Environments (IDEs) such as Microsoft
Visual Studio.

T

Thread — A portion of a program that can run independently of and concurrently with other portions
of the program. See pool for additional information on managing the number of processing threads
available to a server instance.

Type-safe interface — An API that minimizes explicit type conversions by hiding the MWArray type
from the calling application.

W

Web Application Archive (WAR) —In computing, a Web Application Archive is a JAR file used to
distribute a collection of JavaServer pages, servlets, Java classes, XML files, tag libraries, and static
web pages that together constitute a web application.

Webfigure — A MathWorks representation of a MATLAB figure, rendered on the web. Using the
WebFigures feature, you display MATLAB figures on a website for graphical manipulation by end
users. This enables them to use their graphical applications from anywhere on the web, without the
need to download MATLAB or other tools that can consume costly resources.

Windows Communication Foundation (WCF) — The Windows Communication Foundation™ is an
application programming interface in the .NET Framework for building connected, service-oriented,
web-centric applications. WCF is designed in accordance with service oriented architecture
principles to support distributed computing where services are consumed by client applications.

 Deployment Product Terms

7-11

Functions

8

<library>Initialize[WithHandlers]
Initialize MATLAB Runtime instance associated with library

Syntax
bool libraryInitialize(void)
bool libraryInitializeWithHandlers(
 mclOutputHandlerFcn error_handler,
 mclOutputHandlerFcn print_handler)

Description
Each generated library has its own MATLAB Runtime instance. These two functions,
libraryInitialize and libraryInitializeWithHandlers initialize the MATLAB Runtime
instance associated with library. Users must call one of these functions after calling
mclInitializeApplication and before calling any of the compiled functions exported by the
library. Each returns a boolean indicating whether or notmcli initialization was successful. If they
return false, calling any further compiled functions result in unpredictable behavior.
libraryInitializeWithHandlers allows users to specify how to handle error messages and
printed text. The functions passed to libraryInitializeWithHandlers are installed in the
MATLAB Runtime instance and called whenever error text or regular text is to be output.

Examples
if (!libmatrixInitialize())
{
 fprintf(stderr,
 "An error occurred while initializing: \n %s ",
 mclGetLastErrorMessage());
 return -2;
}

See Also
<library>Terminate

Topics
“Library Initialization and Termination Functions” on page 2-25

Introduced in R2009a

8 Functions

8-2

mclGetLastErrorMessage
Last error message from unsuccessful function call

Syntax
const char* mclGetLastErrorMessage()

Description
This function returns a function error message (usually in the form of false or -1). It cannot catch
the errors related to MATLAB Runtime initialization and can catch only errors thrown by MATLAB
functions or code.

Example
char *args[] = { "-nodisplay" };
if(!mclInitializeApplication(args, 1))
{
 fprintf(stderr,
 "An error occurred while initializing: \n %s ",
 mclGetLastErrorMessage());
 return -1;
}

See Also
<library>Initialize[WithHandlers] | <library>Terminate |
mclInitializeApplication | mclTerminateApplication

Introduced in R2010b

 mclGetLastErrorMessage

8-3

mclGetLogFileName
Retrieve name of log file used by MATLAB Runtime

Syntax
const char* mclGetLogFileName()

Description
Use mclGetLogFileName() to retrieve the name of the log file used by the MATLAB Runtime.
Returns a character string representing log file name used by MATLAB Runtime.

Examples
 printf("Logfile name : %s\n",mclGetLogFileName());

Introduced in R2009a

8 Functions

8-4

mclInitializeApplication
Set up application state shared by all MATLAB Runtime instances created in current process

Syntax
bool
 mclInitializeApplication(const char **options, int count)

Description
Set up the application state shared by all MATLAB Runtime instances created in current process. Call
only once per process. The function takes an array of strings (possibly of zero length) and a count
containing the size of the string array. The string array may contain the following MATLAB command
line switches, which have the same meaning as they do when used in MATLAB:

• -appendlogfile
• -Automation
• -beginfile
• -debug
• -defer
• -display
• -Embedding
• -endfile
• -fork
• -java
• -jdb
• -logfile
• -minimize
• -MLAutomation
• -nodisplay
• -noFigureWindows
• -nojvm
• -noshelldde
• -nosplash
• -r
• -Regserver
• -shelldde
• -singleCompThread
• -Unregserver
• -useJavaFigures

 mclInitializeApplication

8-5

• -mwvisual
• -xrm

Caution mclInitializeApplication must be called once only per process. Calling
mclInitializeApplication more than once may cause your application to exhibit unpredictable
or undesirable behavior.

Caution When running on Mac, if -nodisplay is used as one of the options included in
mclInitializeApplication, then the call to mclInitializeApplication must occur before
calling mclRunMain.

Examples
To start all MATLAB Runtime in a given process with the -nodisplay option, for example, use the
following code:

const char *args[] = { "-nodisplay" };
if (! mclInitializeApplication(args, 1))
{
 fprintf(stderr,
 "An error occurred while initializing: \n %s ",
 mclGetLastErrorMessage());
 return -1;
}

See Also
mclTerminateApplication

Introduced in R2009a

8 Functions

8-6

mclIsJVMEnabled
Determine if MATLAB Runtime was started with instance of Java Virtual Machine (JVM)

Syntax
bool mclIsJVMEnabled()

Description
Use mclIsJVMEnabled() to determine if the MATLAB Runtime was started with an instance of a
Java Virtual Machine (JVM™). Returns true if MATLAB Runtime is started with a JVM instance, else
returns false.

Examples
printf("JVM initialized : %d\n", mclIsJVMEnabled());

Introduced in R2009a

 mclIsJVMEnabled

8-7

mclIsMCRInitialized
Determine if MATLAB Runtime has been properly initialized

Syntax
bool mclIsMCRInitialized()

Description
Use mclIsMCRInitialized() to determine whether or not the MATLAB Runtime has been properly
initialized. Returns

• true if MATLAB Runtime is already initialized
• false if the MATLAB Runtime is not initialized

Note This method can only be called once the MATLAB Runtime proxy library has been initiated.

Examples
printf("MCR initialized : %d\n", mclIsMCRInitialized());

Introduced in R2009a

8 Functions

8-8

mclIsNoDisplaySet
Determine if -nodisplay mode is enabled

Syntax
bool mclIsNoDisplaySet()

Description
Use mclIsNoDisplaySet() to determine if -nodisplay mode is enabled. Returns true if -
nodisplay is enabled, else returns false.

Note Always returns false on Windows systems since the -nodisplay option is not supported on
Windows systems.

Examples
printf("nodisplay set : %d\n",mclIsNoDisplaySet());

Introduced in R2009a

 mclIsNoDisplaySet

8-9

mclmcrInitialize
Initialize the MATLAB Runtime proxy library

Syntax
mclmcrInitialize();

Description
mclmcrInitialize() initializes the library used to create the MATLAB Runtime proxy used by all
other MATLAB generated APIs.

mclmcrInitialize() is called by mclInitializeApplication. Therefore, you do not need to
explicitly call this function in your driver code.

See Also
mclInitializeApplication

Introduced in R2013b

8 Functions

8-10

mclRunMain
Mechanism for creating identical wrapper code across all platforms

Syntax
typedef int (*mclMainFcnType)(int, const char **);

int mclRunMain(mclMainFcnType run_main,
 int argc,
 const char **argv)

Description
As you need to provide wrapper code when creating an application which uses a C or C++ shared
library created by MATLAB Compiler SDK, mclRunMain enables you with a mechanism for creating
identical wrapper code across all MATLAB Compiler SDK platform environments.

mclRunMain is especially helpful in Macintosh OS X environments where a run loop must be created
for correct MATLAB Runtime operation.

When a Mac OS X run loop is started, if mclInitializeApplication specifies the -nojvm or -
nodisplay option, creating a run loop is a straight-forward process. Otherwise, you must create a
Cocoa framework. The Cocoa frameworks consist of libraries, APIs, and MATLAB Runtime that form
the development layer for all of Mac OS X.

Generally, the function pointed to by run_main returns with a pointer (return value) to the code that
invoked it. When using Cocoa on the Macintosh, however, when the function pointed to by run_main
returns, the MATLAB Runtime calls exit before the return value can be received by the application,
due to the inability of the underlying code to get control when Cocoa is shut down.

Caution You should not use mclRunMain if your application brings up its own full graphical
environment.

Note In non-Macintosh environments, mclRunMain acts as a wrapper and does not perform any
significant processing.

Parameters
run_main

Name of function to execute after MATLAB Runtime set-up code.

argc

Number of arguments being passed to run_main function. Usually, argc is received by application at
its main function.

 mclRunMain

8-11

argv

Pointer to an array of character pointers. Usually, argv is received by application at its main
function.

Examples
Call using this basic structure:

int returncode = 0;
mclInitializeApplication(NULL,0);
returncode = mclRunMain((mclmainFcn)
 my_main_function,0,NULL);

See Also
mclInitializeApplication

Introduced in R2010b

8 Functions

8-12

mclTerminateApplication
Close MATLAB Runtime-internal application state

Syntax
bool mclTerminateApplication(void)

Description
Call this function once at the end of your program to close MATLAB Runtime-internal application
state. Call only once per process. After you have called this function, you cannot call any further
MATLAB Compiler SDK-generated functions or any functions in any MATLAB library.

Caution mclTerminateApplication must be called once only per process. Calling
mclTerminateApplication more than once may cause your application to exhibit unpredictable or
undesirable behavior.

Caution mclTerminateApplication will close any visible or invisible figures before exiting. If you
have visible figures that you would like to wait for, use mclWaitForFiguresToDie.

Examples
At the start of your program, call mclInitializeApplication to ensure that your library was
properly initialized:

mclInitializeApplication(NULL,0);
if (!libmatrixInitialize()){
 fprintf(stderr,
 "An error occurred while initializing: \n %s ",
 mclGetLastErrorMessage());
 return -1;
}

At your program's exit point, call mclTerminateApplication to properly shut down the
application:

mxDestroyArray(in1); in1=0;
mxDestroyArray(in2); in2 = 0;
mclTerminateApplication();
return 0;

See Also
mclInitializeApplication

Introduced in R2009a

 mclTerminateApplication

8-13

mclWaitForFiguresToDie
Enable deployed applications to process graphics events, enabling figure windows to remain
displayed

Syntax
void mclWaitForFiguresToDie(HMCRINSTANCE instReserved)

Description
Calling void mclWaitForFiguresToDie enables the deployed application to process graphics
events.

NULL is the only parameter accepted for the MATLAB Runtime instance (HMCRINSTANCE
instReserved).

This function can only be called after libraryInitialize has been called and before
libraryTerminate has been called.

mclWaitForFiguresToDie blocks all open figures. This function runs until no visible figures
remain. At that point, it displays a warning if there are invisible figures present. This function returns
only when the last figure window is manually closed — therefore, this function should be called after
the library runs at least one figure window. This function may be called multiple times.

If this function is not called, any figure windows initially displayed by the application briefly appear,
and then the application exits.

Note mclWaitForFiguresToDie blocks the calling program only for MATLAB figures. It does not
block any Java GUIs, ActiveX® controls, and other non-MATLAB GUIs unless they are embedded in a
MATLAB figure window.

Examples
int run_main(int argc, const char** argv)
{
 int some_variable = 0;
 if (argc > 1)
 test_to_run = atoi(argv[1]);

 /* Initialize application */

 if(!mclInitializeApplication(NULL,0))
 {
 fprintf(stderr,
 "An error occurred while
 initializing: \n %s ",
 mclGetLastErrorMessage());
 return -1;
 }

8 Functions

8-14

 if (test_to_run == 1 || test_to_run == 0)
 {
 /* Initialize ax1ks library */
 if (!libax1ksInitialize())
 {
 fprintf(stderr,
 "An error occurred while
 initializing: \n %s ",
 mclGetLastErrorMessage());
 return -1;
 }
 }

 if (test_to_run == 2 || test_to_run == 0)
 {
 /* Initialize simple library */
 if (!libsimpleInitialize())
 {
 fprintf(stderr,
 "An error occurred while
 initializing: \n %s ",
 mclGetLastErrorMessage());
 return -1;
 }
 }

 /* your code here
 /* your code here
 /* your code here
 /* your code here
 /*
 /* Block on open figures */
 mclWaitForFiguresToDie(NULL);
 /* Terminate libraries */
 if (test_to_run == 1 || test_to_run == 0)
 libax1ksTerminate();
 if (test_to_run == 2 || test_to_run == 0)
 libsimpleTerminate();
 /* Terminate application */
 mclTerminateApplication();
 return(0);
}

See Also
mclInitializeApplication | mclRunMain | mclTerminateApplication

Introduced in R2009a

 mclWaitForFiguresToDie

8-15

<library>Terminate
Free all resources allocated by MATLAB Runtime instance associated with library

Syntax
void libraryTerminate(void)

Description
This function should be called after you finish calling the functions in this generated library, but
before mclTerminateApplication is called.

Examples
Call libmatrixInitialize to initialize libmatrix library properly near the start of your program:

/* Call the library initialization routine and ensure the
* library was initialized properly. */
if (!libmatrixInitialize())
{
 fprintf(stderr,
 "An error occurred while initializing: \n %s ",
 mclGetLastErrorMessage());
 return -2;
}
else
 ...

Near the end of your program (but before calling mclTerminateApplication) free resources
allocated by the MATLAB Runtime instance associated with library libmatrix:

/* Call the library termination routine */
libmatrixTerminate();
/* Free the memory created */
mxDestroyArray(in1); in1=0;
mxDestroyArray(in2); in2 = 0;
}

See Also
<library>Initialize[WithHandlers]

Topics
“Library Initialization and Termination Functions” on page 2-25

Introduced in R2015a

8 Functions

8-16

C++ Utility Library Reference

A

Data Conversion Restrictions for the C++ MWArray API
Currently, returning a Java object to your application, from a compiled MATLAB function, is
unsupported.

A Data Conversion Restrictions for the C++ MWArray API

A-2

Primitive Types
The mwArray API supports all primitive types that can be stored in a MATLAB array. This table lists
all the types.

Type Description mxClassID
mxChar Character type mxCHAR_CLASS
mxLogical Logical or Boolean type mxLOGICAL_CLASS
mxDouble Double-precision floating-point

type
mxDOUBLE_CLASS

mxSingle Single-precision floating-point
type

mxSINGLE_CLASS

mxInt8 1-byte signed integer mxINT8_CLASS
mxUint8 1-byte unsigned integer mxUINT8_CLASS
mxInt16 2-byte singed integer mxINT16_CLASS
mxUint16 2-byte unsigned integer mxUINT16_CLASS
mxInt32 4-byte signed integer mxINT32_CLASS
mxUint32 4-byte unsigned integer mxUINT32_CLASS
mxInt64 8-byte signed integer mxINT64_CLASS
mxUint64 8-byte unsigned integer mxUINT64_CLASS

 Primitive Types

A-3

C++ Utility Classes
• mwString
• mwException
• mwArray

A C++ Utility Classes

A-4

mwString
String class used by the mwArray API to pass string data as output from certain methods

Description
The mwString class is a simple string class used by the mwArray API to pass string data as output
from certain methods.

Required Headers
• mclcppclass.h
• mclmcrrt.h

Tip MATLAB Compiler SDK automatically includes these header files in the header file generated for
your MATLAB functions.

Constructors
mwString()
Description

Create an empty string.

mwString(char* str)
Description

Create a new string and initialize the string’s data with the supplied char buffer.
Arguments

char* str Null terminated character buffer

mwString(mwString& str)
Description

Create a new string and initialize the string’s data with the contents of the supplied string.
Arguments

mwString& str Initialized mwString instance

Methods
int Length() const
Description

Return the number of characters in string.

 mwString

A-5

Example

mwString str("This is a string");
int len = str.Length();

Operators
operator const char* () const
Description

Return a pointer to internal buffer of string.

Example

mwString str("This is a string");
const char* pstr = (const char*)str;

mwString& operator=(const mwString& str)
Description

Copy the contents of one string into a new string.

Arguments

mwString& str Initialized mwString instance to copy

Example

mwString str("This is a string");
mwString new_str = str;

mwString& operator=(const char* str)
Description

Copy the contents of a null terminated character buffer into a new string.

Arguments

char* str Null terminated character buffer to copy

Example

const char* pstr = "This is a string";
mwString str = pstr;

bool operator==(const mwString& str) const
Description

Test two mwString instances for equality. If the characters in the string are the same, the instances
are equal.

Arguments

mwString& str Initialized mwString instance

A mwString

A-6

Example

mwString str("This is a string");
mwString str2("This is another string");
bool ret = (str == str2);

bool operator!=(const mwString& str) const

Description

Test two mwString instances for inequality. If the characters in the string are not the same, the
instances are inequal.

Arguments

mwString& str Initialized mwString instance

Example

mwString str("This is a string");
mwString str2("This is another string");
bool ret = (str != str2);

bool operator<(const mwString& str) const

Description

Compare two strings and return true if the first string is lexicographically less than the second
string.

Arguments

mwString& str Initialized mwString instance

Example

mwString str("This is a string");
mwString str2("This is another string");
bool ret = (str < str2);

bool operator<=(const mwString& str) const

Description

Compare two strings and return true if the first string is lexicographically less than or equal to the
second string.

Arguments

mwString& str Initialized mwString instance

Example

mwString str("This is a string");
mwString str2("This is another string");
bool ret = (str <= str2);

 mwString

A-7

bool operator>(const mwString& str) const

Description

Compare two strings and return true if the first string is lexicographically greater than the second
string.

Arguments

mwString& str Initialized mwString instance

Example

mwString str("This is a string");
mwString str2("This is another string");
bool ret = (str > str2);

bool operator>=(const mwString& str) const

Description

Compare two strings and return true if the first string is lexicographically greater than or equal to
the second string.

Arguments

mwString& str Initialized mwString instance

Example

mwString str("This is a string");
mwString str2("This is another string");
bool ret = (str >= str2);

friend std::ostream& operator<<(std::ostream& os, const mwString& str)

Description

Copy contents of input string to specified ostream.

Arguments

std::ostream& os Initialized ostream instance to copy string into
mwString& str Initialized mwString instance to copy

Example

#include <ostream>
mwString str("This is a string");
std::cout << str << std::endl;

Introduced in R2013b

A mwString

A-8

mwException
Exception type used by the mwArray API and the C++ interface functions

Description
The mwException class is the basic exception type used by the mwArray API and the C++ interface
functions. All errors created during calls to the mwArray API and to generated C++ interface
functions are thrown as mwExceptions.

Required Headers
• mclcppclass.h
• mclmcrrt.h

Tip MATLAB Compiler SDK automatically includes these header files in the header file generated for
your MATLAB functions.

Constructors
mwException()
Description

Construct new mwException with default error message.

mwException(char* msg)
Description

Create an mwException with a specified error message.

Arguments

char* msg Null terminated character buffer to use as the
error message

mwException(mwException& e)
Description

Create a copy of an mwException.

Arguments

mwException& e Initialized mwException instance to copy

mwException(std::exception& e)
Description

Create new mwException from existing std::exception.

 mwException

A-9

Arguments

std::exception& e std::exception to copy

Methods
char* what() const throw()
Description

Return the error message contained in this exception.
Example

try
{
 ...
}
catch (const std::exception& e)
{
 std::cout << e.what() << std::endl;
}

void print_stack_trace()
Description

Print the stack trace to std::cerr.

Operators
mwException& operator=(const mwException& e)
Description

Copy the contents of one exception into a new exception.
Arguments

mwException& e An initialized mwException instance to copy

Example

try
{
 ...
}
catch (const mwException& e)
{
 mwException e2 = e;
 throw e2;
}

mwException& operator=(const std::exception& e)
Description

Copy the contents of one exception into a new exception.

A mwException

A-10

Arguments

std::exception& e std::exception to copy

Example

try
{
 ...
}
catch (const std::exception& e)
{
 mwException e2 = e;
 throw e2;
}

Introduced in R2013b

 mwException

A-11

mwArray
Class used to pass input/output arguments to C++ functions generated by MATLAB Compiler SDK

Description
Use the mwArray class to pass input/output arguments to generated C++ interface functions. This
class consists of a thin wrapper around a MATLAB array. All data in MATLAB is represented by
arrays. The mwArray class provides the necessary constructors, methods, and operators for array
creation and initialization, as well as simple indexing.

Note Arithmetic operators, such as addition and subtraction, are no longer supported as of Release
14.

Required Headers
• mclcppclass.h
• mclmcrrt.h

Tip MATLAB Compiler SDK automatically includes these header files in the header file generated for
your MATLAB functions.

Constructors
mwArray()
Description

Construct empty array of type mxDOUBLE_CLASS.

mwArray(mxClassID mxID)
Description

Construct empty array of specified type.

Arguments

mxClassID mxID Valid mxClassID specifying the type of array to
construct. See “Work with mxArrays” (MATLAB)
for more information on mxClassID.

mwArray(mwSize num_rows, mwSize num_cols, mxClassID mxID, mxComplexity cmplx =
mxREAL)
Description

Create a 2–D matrix of the specified type and complexity. For nonnumeric types, mxComplexity will
be ignored. For numeric types, pass mxCOMPLEX for the last argument to create a complex matrix;

A mwArray

A-12

otherwise, the matrix will be real. All elements are initialized to zero. For cell matrices, all elements
are initialized to empty cells.
Arguments

mwSize num_rows Number of rows in the array
mwSize num_cols Number of columns in the array
mxClassID mxID Valid mxClassID specifying the type of array to

construct. See “Work with mxArrays” (MATLAB)
for more information on mxClassID.

mxComplexity cmplx Complexity of the array to create. Valid values are
mxREAL and mxCOMPLEX. The default value is
mxREAL.

mwArray(mwSize num_dims, const mwSize* dims, mxClassID mxID, mxComplexity cmplx =
mxREAL)
Description

Create an n-dimensional array of the specified type and complexity. For nonnumeric types,
mxComplexity will be ignored. For numeric types, pass mxCOMPLEX for the last argument to create a
complex matrix; otherwise, the array will be real. All elements are initialized to zero. For cell arrays,
all elements are initialized to empty cells.
Arguments

mwSize num_dims Number of dimensions in the array
const mwSize* dims Dimensions of the array
mxClassID mxID Valid mxClassID specifying the type of array to

construct. See “Work with mxArrays” (MATLAB)
for more information on mxClassID.

mxComplexity cmplx Complexity of the array to create. Valid values are
mxREAL and mxCOMPLEX. The default value is
mxREAL.

mwArray(const char* str)
Description

Create a 1-by-n array of type mxCHAR_CLASS, with n = strlen(str), and initialize the array's data
with the characters in the supplied string.
Arguments

const char* str Null-terminated character buffer used to initialize
the array

mwArray(mwSize num_strings, const char** str)
Description

Create a matrix of type mxCHAR_CLASS, and initialize the array's data with the characters in the
supplied strings. The created array has dimensions m-by-max, where m is the number of strings and
max is the length of the longest string in str.

 mwArray

A-13

Arguments

mwSize num_strings Number of strings in the input array
const char** str Array of null-terminated strings

mwArray(mwSize num_rows, mwSize num_cols, int num_fields, const char** fieldnames)
Description

Create a matrix of type mxSTRUCT_CLASS, with the specified field names. All elements are initialized
with empty cells.

Arguments

mwSize num_rows Number of rows in the array
mwSize num_cols Number of columns in the array
int num_fields Number of fields in the struct matrix.
const char** fieldnames Array of null-terminated strings representing the

field names

mwArray(mwSize num_dims, const mwSize* dims, int num_fields, const char** fieldnames)
Description

Create an n-dimensional array of type mxSTRUCT_CLASS, with the specified field names. All elements
are initialized with empty cells.

Arguments

mwSize num_dims Number of dimensions in the array
const mwSize* dims Dimensions of the array
int num_fields Number of fields in the struct matrix.
const char** fieldnames Array of null-terminated strings representing the

field names

mwArray(const mwArray& arr)
Description

Create a deep copy of an existing array.

Arguments

mwArray& arr mwArray to copy

mwArray(<type> re)
Description

Create a real scalar array.

The scalar array is created with the type of the input argument.

A mwArray

A-14

Arguments

<type> re Scalar value to initialize the array. <type> can be
any of the following:

• mxDouble
• mxSingle
• mxInt8
• mxUint8
• mxInt16
• mxUint16
• mxInt32
• mxUint32
• mxInt64
• mxUint64
• mxLogical

mwArray(<type> re, <type> im)

Description

Create a complex scalar array.

The scalar array is created with the type of the input argument.

Arguments

<type> re Scalar value to initialize the real part of the array
<type> im Scalar value to initialize the imaginary part of the

array

<type> can be any of the following:

• mxDouble
• mxSingle
• mxInt8
• mxUint8
• mxInt16
• mxUint16
• mxInt32
• mxUint32
• mxInt64
• mxUint64
• mxLogical

 mwArray

A-15

Methods
mwArray Clone() const
Description

Create a new array representing deep copy of array.

Example

mwArray a(2, 2, mxDOUBLE_CLASS);
mwArray b = a.Clone();

mwArray SharedCopy() const
Description

Create a shared copy of an existing array. The new array and the original array both point to the same
data.

Example

mwArray a(2, 2, mxDOUBLE_CLASS);
mwArray b = a.SharedCopy();

mwArray Serialize() const
Description

Serialize an array into bytes. A 1-by-n numeric matrix of type mxUINT8_CLASS is returned containing
the serialized data. The data can be deserialized back into the original representation by calling
mwArray::Deserialize().

Example

mwArray a(2, 2, mxDOUBLE_CLASS);
mwArray b = a.Serialize();

mxClassID ClassID() const
Description

Determine the type of the array. See “Work with mxArrays” (MATLAB) for more information on
mxClassID.

Example

mwArray a(2, 2, mxDOUBLE_CLASS);
mxClassID id = a.ClassID();

size_t ElementSize() const
Description

Determine the size, in bytes, of an element of array type. If the array is complex, the return value will
represent the size, in bytes, of the real part of an element.

Example

mwArray a(2, 2, mxDOUBLE_CLASS);
int size = a.ElementSize();

A mwArray

A-16

mwSize NumberOfElements() const
Description

Determine the total size of the array.

Example

mwArray a(2, 2, mxDOUBLE_CLASS);
int n = a.NumberOfElements();

mwSize NumberOfNonZeros() const
Description

Determine the size of the array's data. If the underlying array is not sparse, this returns the same
value as NumberOfElements().

Example

mwArray a(2, 2, mxDOUBLE_CLASS);
int n = a.NumberOfNonZeros();

mwSize MaximumNonZeros() const
Description

Determine the allocated size of the array's data. If the underlying array is not sparse, this returns the
same value as NumberOfElements().

Example

mwArray a(2, 2, mxDOUBLE_CLASS);
int n = a.MaximumNonZeros();

mwSize NumberOfDimensions() const
Description

Determine the dimensionality of the array.

Example

mwArray a(2, 2, mxDOUBLE_CLASS);
int n = a.NumberOfDimensions();

int NumberOfFields() const
Description

Determine the number of fields in a struct array. If the underlying array is not of type struct, zero
is returned.

Example

const char* fields[] = {"a", "b", "c"};
mwArray a(2, 2, 3, fields);
int n = a.NumberOfFields();

 mwArray

A-17

mwString GetFieldName(int index)
Description

Determine the name of a given field in a struct array. If the underlying array is not of type struct,
an exception is thrown.
Arguments

int index Index of the field to name. Indexing starts at zero.

Example

const char* fields[] = {"a", "b", "c"};
mwArray a(2, 2, 3, fields);
mwString tempname = a.GetFieldName(1);
const char* name = (const char*)tempname;

mwArray GetDimensions() const
Description

Determine the size of each dimension in the array. The size of the returned array is 1-by-
NumberOfDimensions().
Example

mwArray a(2, 2, mxDOUBLE_CLASS);
mwArray dims = a.GetDimensions();

bool IsEmpty() const
Description

Determine if an array is empty.
Example

mwArray a;
bool b = a.IsEmpty();

bool IsSparse() const
Description

Determine if an array is sparse.
Example

mwArray a(2, 2, mxDOUBLE_CLASS);
bool b = a.IsSparse();

bool IsNumeric() const
Description

Determine if an array is numeric.
Example

mwArray a(2, 2, mxDOUBLE_CLASS);
bool b = a.IsNumeric();

A mwArray

A-18

bool IsComplex() const
Description

Determine if an array is complex.

Example

mwArray a(2, 2, mxDOUBLE_CLASS, mxCOMPLEX);
bool b = a.IsComplex();

bool Equals(const mwArray& arr) const
Description

Returns true if the input array is byte-wise equal to this array. This method makes a byte-wise
comparison of the underlying arrays. Therefore, arrays of the same type should be compared. Arrays
of different types will not in general be equal, even if they are initialized with the same data.

Arguments

mwArray& arr Array to compare to array.

Example

mwArray a(1, 1, mxDOUBLE_CLASS);
mwArray b(1, 1, mxDOUBLE_CLASS);
a = 1.0;
b = 1.0;
bool c = a.Equals(b);

int CompareTo(const mwArray& arr) const
Description

Compares this array with the specified array for order. This method makes a byte-wise comparison of
the underlying arrays. Therefore, arrays of the same type should be compared. Arrays of different
types will, in general, not be ordered equivalently, even if they are initialized with the same data.

Arguments

mwArray& arr Array to compare to array.

Example

mwArray a(1, 1, mxDOUBLE_CLASS);
mwArray b(1, 1, mxDOUBLE_CLASS);
a = 1.0;
b = 1.0;
int n = a.CompareTo(b);

int HashCode() const
Description

Constructs a unique hash value from the underlying bytes in the array. Therefore, arrays of different
types will have different hash codes, even if they are initialized with the same data.

 mwArray

A-19

Example

mwArray a(1, 1, mxDOUBLE_CLASS);
int n = a.HashCode();

mwString ToString() const
Description

Returns a string representation of the underlying array. The string returned is the same one that is
returned by typing a variable's name at the MATLAB command prompt.
Example

mwArray a(1, 1, mxDOUBLE_CLASS, mxCOMPLEX);
a.Real() = 1.0;
a.Imag() = 2.0;
printf("%s\n", (const char*)(a.ToString()));

mwArray RowIndex() const
Description

Returns an array representing the row indices (first dimension) of the elements of this array in
column-major order. For sparse arrays, the indices are returned for just the non-zero elements and
the size of the array returned is 1-by-NumberOfNonZeros(). For nonsparse arrays, the size of the
array returned is 1-by-NumberOfElements(), and the row indices of all of the elements are
returned.
Example

#include <stdio.h>
mwArray a(1, 1, mxDOUBLE_CLASS);
mwArray rows = a.RowIndex();

mwArray ColumnIndex() const
Description

Returns an array representing the column indices (second dimension) of the elements of this array in
column-major order. For sparse arrays, the indices are returned for just the non-zero elements and
the size of the array returned is 1-by-NumberOfNonZeros(). For nonsparse arrays, the size of the
array returned is 1-by-NumberOfElements(), and the column indices of all of the elements are
returned.
Example

mwArray a(1, 1, mxDOUBLE_CLASS);
mwArray rows = a.ColumnIndex();

void MakeComplex()
Description

Convert a numeric array that has been previously allocated as real to complex. If the underlying
array is of a nonnumeric type, an mwException is thrown.
Example

double rdata[4] = {1.0, 2.0, 3.0, 4.0};
double idata[4] = {10.0, 20.0, 30.0, 40.0};

A mwArray

A-20

mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(rdata, 4);
a.MakeComplex();
a.Imag().SetData(idata, 4);

mwArray Get(mwSize num_indices, ...)
Description

Fetches a single element at a specified index. The number of indices is passed, followed by a comma-
separated list of 1-based indices. The valid number of indices that can be passed in is either 1 (single
subscript indexing) or NumberOfDimensions() (multiple subscript indexing). In single subscript
indexing the element at the specified 1-based offset is returned, accessing data in column-major
order. In multiple subscript indexing the index list is used to access the specified element. The valid
range for indices is 1 <= index <= NumberOfElements(), for single subscript indexing. For
multiple subscript indexing, the ith index has the valid range:
1 <= index[i] <= GetDimensions().Get(1, i). An mwException is thrown if an invalid
number of indices is passed in or if any index is out of bounds.

Arguments

mwSize num_indices Number of indices passed in
... Comma-separated list of input indices. Number of

items must equal num_indices but should not
exceed 32.

Example

double data[4] = {1.0, 2.0, 3.0, 4.0};
double x;
mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(data, 4);
x = a.Get(1,1);
x = a.Get(2, 1, 2);
x = a.Get(2, 2, 2);

mwArray Get(const char* name, mwSize num_indices, ...)
Description

Fetches a single element at a specified field name and index. This method may only be called on an
array that is of type mxSTRUCT_CLASS. An mwException is thrown if the underlying array is not a
struct array. The field name passed must be a valid field name in the struct array. The index is
passed by first passing the number of indices followed by a comma-separated list of 1-based indices.
The valid number of indices that can be passed in is either 1 (single subscript indexing) or
NumberOfDimensions() (multiple subscript indexing). In single subscript indexing the element at
the specified 1-based offset is returned, accessing data in column-wise order. In multiple subscript
indexing the index list is used to access the specified element. The valid range for indices is
1 <= index <= NumberOfElements(), for single subscript indexing. For multiple subscript
indexing, the ith index has the valid range: 1 <= index[i] <= GetDimensions().Get(1, i).
An mwException is thrown if an invalid number of indices is passed in or if any index is out of
bounds.

 mwArray

A-21

Arguments

char* name Null-terminated character buffer containing the
name of the field

mwSize num_indices Number of indices passed in
... Comma-separated list of input indices. Number of

items must equal num_indices but should not
exceed 32.

Example

const char* fields[] = {"a", "b", "c"};

mwArray a(1, 1, 3, fields);
mwArray b = a.Get("a", 1, 1);
mwArray b = a.Get("b", 2, 1, 1);

mwArray Real()
Description

Accesses the real part of a complex array. The returned mwArray is considered real and has the same
dimensionality and type as the original.

Complex arrays consist of Complex numbers, which are 1-by-2 vectors (pairs). For example, if the
number is 3+5i, then the pair is (3,5i). An array of Complex numbers is therefore two dimensional
(N-by-2), where N is the number of complex numbers in the array. 2+4i, 7-3i, 8+6i would be
represented as (2,4i) (7,3i) (8,6i). Complex numbers have two components, real and
imaginary.

Example

double rdata[4] = {1.0, 2.0, 3.0, 4.0};
double idata[4] = {10.0, 20.0, 30.0, 40.0};
mwArray a(2, 2, mxDOUBLE_CLASS, mxCOMPLEX);
a.Real().SetData(rdata, 4);

mwArray Imag()
Description

Accesses the imaginary part of a complex array. The returned mwArray is considered real and has the
same dimensionality and type as the original.

Complex arrays consist of Complex numbers, which are 1-by-2 vectors (pairs). For example, if the
number is 3+5i, then the pair is (3,5i). An array of Complex numbers is therefore two dimensional
(N-by-2), where N is the number of complex numbers in the array. 2+4i, 7-3i, 8+6i would be
represented as (2,4i) (7,3i) (8,6i). Complex numbers have two components, real and
imaginary.

Example

double rdata[4] = {1.0, 2.0, 3.0, 4.0};
double idata[4] = {10.0, 20.0, 30.0, 40.0};
mwArray a(2, 2, mxDOUBLE_CLASS, mxCOMPLEX);
a.Imag().SetData(idata, 4);

A mwArray

A-22

void Set(const mwArray& arr)
Description

Assign shared copy of input array to currently referenced cell for arrays of type mxCELL_CLASS and
mxSTRUCT_CLASS.
Arguments

mwArray& arr mwArray to assign to currently referenced cell

Example

mwArray a(2, 2, mxDOUBLE_CLASS);
mwArray b(2, 2, mxINT16_CLASS);
mwArray c(1, 2, mxCELL_CLASS);
c.Get(1,1).Set(a);
c.Get(1,2).Set(b);

void GetData(<numeric-type>* buffer, mwSize len) const
Description

Copies the array's data into supplied numeric buffer.

The data is copied in column-major order. If the underlying array is not of the same type as the input
buffer, the data is converted to this type as it is copied. If a conversion cannot be made, an
mwException is thrown.
Arguments

<numeric-type>* buffer Buffer to receive copy. Valid types for <numeric-
type> are:

• mxDOUBLE_CLASS
• mxSINGLE_CLASS
• mxINT8_CLASS
• mxUINT8_CLASS
• mxINT16_CLASS
• mxUINT16_CLASS
• mxINT32_CLASS
• mxUINT32_CLASS
• mxINT64_CLASS
• mxUINT64_CLASS

mwSize len Maximum length of buffer. A maximum of len
elements will be copied.

Example

double rdata[4] = {1.0, 2.0, 3.0, 4.0};
double data_copy[4] ;
mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(rdata, 4);
a.GetData(data_copy, 4);

 mwArray

A-23

void GetLogicalData(mxLogical* buffer, mwSize len) const
Description

Copies the array's data into supplied mxLogical buffer.

The data is copied in column-major order. If the underlying array is not of type mxLOGICAL_CLASS,
the data is converted to this type as it is copied. If a conversion cannot be made, an mwException is
thrown.

Arguments

mxLogical* buffer Buffer to receive copy
mwSize len Maximum length of buffer. A maximum of len

elements will be copied.

Example

mxLogical data[4] = {true, false, true, false};
mxLogical data_copy[4] ;
mwArray a(2, 2, mxLOGICAL_CLASS);
a.SetLogicalData(data, 4);
a.GetLogicalData(data_copy, 4);

void GetCharData(mxChar* buffer, mwSize len) const
Description

Copies the array's data into supplied mxChar buffer.

The data is copied in column-major order. If the underlying array is not of type mxCHAR_CLASS, the
data is converted to this type as it is copied. If a conversion cannot be made, an mwException is
thrown.

Arguments

mxChar** buffer Buffer to receive copy
mwSize len Maximum length of buffer. A maximum of len

elements will be copied.

Example

mxChar data[6] = {'H', 'e' , `l' , 'l' , 'o' , '\0'};
mxChar data_copy[6] ;
mwArray a(1, 6, mxCHAR_CLASS);
a.SetCharData(data, 6);
a.GetCharData(data_copy, 6);

void SetData(<numeric-type>* buffer, mwSize len)
Description

Copies the data from supplied numeric buffer into the array.

The data is copied in column-major order. If the underlying array is not of the same type as the input
buffer, the data is converted to this type as it is copied. If a conversion cannot be made, an
mwException is thrown.

A mwArray

A-24

You cannot use SetData to dynamically resize an mwArray.

Arguments

<numeric-type>* buffer Buffer containing data to copy. Valid types for
<numeric-type> are:

• mxDOUBLE_CLASS
• mxSINGLE_CLASS
• mxINT8_CLASS
• mxUINT8_CLASS
• mxINT16_CLASS
• mxUINT16_CLASS
• mxINT32_CLASS
• mxUINT32_CLASS
• mxINT64_CLASS
• mxUINT64_CLASS

mwSize len Maximum length of buffer. A maximum of len
elements will be copied.

Example

double rdata[4] = {1.0, 2.0, 3.0, 4.0};
double data_copy[4] ;
mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(rdata, 4);
a.GetData(data_copy, 4);

void SetLogicalData(mxLogical* buffer, mwSize len)

Description

Copies the data from the supplied mxLogical buffer into the array.

The data is copied in column-major order. If the underlying array is not of type mxLOGICAL_CLASS,
the data is converted to this type as it is copied. If a conversion cannot be made, an mwException is
thrown.

Arguments

mxLogical* buffer Buffer containing data to copy
mwSize len Maximum length of buffer. A maximum of len

elements will be copied.

Example

mxLogical data[4] = {true, false, true, false};
mxLogical data_copy[4] ;
mwArray a(2, 2, mxLOGICAL_CLASS);
a.SetLogicalData(data, 4);
a.GetLogicalData(data_copy, 4);

 mwArray

A-25

void SetCharData(mxChar* buffer, mwSize len)
Description

Copies the data from the supplied mxChar buffer into the array.

The data is copied in column-major order. If the underlying array is not of type mxCHAR_CLASS, the
data is converted to this type as it is copied. If a conversion cannot be made, an mwException is
thrown.

Arguments

mxChar** buffer Buffer containing data to copy
mwSize len Maximum length of buffer. A maximum of len

elements will be copied.

Example

mxChar data[6] = {'H', 'e' , `l' , 'l' , 'o' , '\0'};
mxChar data_copy[6] ;
mwArray a(1, 6, mxCHAR_CLASS);
a.SetCharData(data, 6);
a.GetCharData(data_copy, 6);

static mwArray Deserialize(const mwArray& arr)
Description

Deserializes an array that has been serialized with mwArray::Serialize(). The input array must
be of type mxUINT8_CLASS and contain the data from a serialized array. If the input data does not
represent a serialized mwArray, the behavior of this method is undefined.

Arguments

mwArray& arr mwArray that has been obtained by calling
mwArray::Serialize

Example

double rdata[4] = {1.0, 2.0, 3.0, 4.0};
mwArray a(1,4,mxDOUBLE_CLASS);
a.SetData(rdata, 4);
mwArray b = a.Serialize();
a = mwArray::Deserialize(b);

static mwArray NewSparse(mwSize rowindex_size, const mwIndex* rowindex, mwSize
colindex_size, const mwIndex* colindex, mwSize data_size, const mxDouble* rdata, mwSize
num_rows, mwSize num_cols, mwSize nzmax)
Description

Creates real sparse matrix of type double with specified number of rows and columns.

The lengths of input row, column index, and data arrays must all be the same or equal to 1. In the
case where any of these arrays are equal to 1, the value is repeated throughout the construction of
the matrix.

A mwArray

A-26

If the same row/column pair occurs more than once, the data value assigned to that element is the
sum of all values associated with that pair. If any element of the rowindex or colindex array is
greater than the specified values in num_rows or num_cols respectively, an exception is thrown.
Arguments

mwSize rowindex_size Size of rowindex array
mwIndex* rowindex Array of row indices of non-zero elements
mwSize colindex_size Size of colindex array
mwIndex* colindex Array of column indices of non-zero elements
mwSize data_size Size of data array
mxDouble* rdata Data associated with non-zero row and column

indices
mwSize num_rows Number of rows in matrix
mwSize num_cols Number of columns in matrix
mwSize nzmax Reserved storage for sparse matrix. If nzmax is

zero, storage will be set to
max{rowindex_size, colindex_size,
data_size}.

Example

This example constructs a sparse 4-by-4 tridiagonal matrix:

2 -1 0 0
-1 2 -1 0
0 -1 2 -1
0 0 -1 2

The following code, when run:

double rdata[] =
 {2.0, -1.0, -1.0, 2.0, -1.0,
 -1.0, 2.0, -1.0, -1.0, 2.0};
mwIndex row_tridiag[] =
 {1, 2, 1, 2, 3,
 2, 3, 4, 3, 4 };
mwIndex col_tridiag[] =
 {1, 1, 2, 2, 2,
 3, 3, 3, 4, 4 };

mwArray mysparse =
 mwArray::NewSparse(10, row_tridiag,
 10, col_tridiag,
 10, rdata, 4, 4, 10);
std::cout << mysparse << std::endl;

will display the following output to the screen:

 (1,1) 2
 (2,1) -1
 (1,2) -1
 (2,2) 2
 (3,2) -1

 mwArray

A-27

 (2,3) -1
 (3,3) 2
 (4,3) -1
 (3,4) -1
 (4,4) 2

static mwArray NewSparse(mwSize rowindex_size, const mwIndex* rowindex, mwSize
colindex_size, const mwIndex* colindex, mwSize data_size, const mxDouble* rdata, mwSize
nzmax)
Description

Creates real sparse matrix of type double with number of rows and columns inferred from input
data.

The lengths of input row and column index and data arrays must all be the same or equal to 1. In the
case where any of these arrays are equal to 1, the value is repeated through out the construction of
the matrix.

If the same row/column pair occurs more than once, the data value assigned to that element is the
sum of all values associated with that pair. The number of rows and columns in the created matrix are
calculated from the input rowindex and colindex arrays as num_rows = max{rowindex},
num_cols = max{colindex}.
Arguments

mwSize rowindex_size Size of rowindex array
mwIndex* rowindex Array of row indices of non-zero elements
mwSize colindex_size Size of colindex array
mwIndex* colindex Array of column indices of non-zero elements
mwSize data_size Size of data array
mxDouble* rdata Data associated with non-zero row and column

indices
mwSize nzmax Reserved storage for sparse matrix. If nzmax is

zero, storage will be set to
max{rowindex_size, colindex_size,
data_size}.

Example

In this example, we construct a sparse 4-by-4 identity matrix. The value of 1.0 is copied to each non-
zero element defined by row and column index arrays:

double one = 1.0;
mwIndex row_diag[] = {1, 2, 3, 4};
mwIndex col_diag[] = {1, 2, 3, 4};

mwArray mysparse =
 mwArray::NewSparse(4, row_diag,
 4, col_diag,
 1, &one,
 0);
std::cout << mysparse << std::endl;

A mwArray

A-28

(1,1) 1
(2,2) 1
(3,3) 1
(4,4) 1

static mwArray NewSparse(mwSize rowindex_size, const mwIndex* rowindex, mwSize
colindex_size, const mwIndex* colindex, mwSize data_size, const mxDouble* rdata, const
mxDouble* idata, mwSize num_rows, mwSize num_cols, mwSize nzmax)
Description

Creates complex sparse matrix of type double with specified number of rows and columns.

The lengths of input row and column index and data arrays must all be the same or equal to 1. In the
case where any of these arrays are equal to 1, the value is repeated through out the construction of
the matrix.

If the same row/column pair occurs more than once, the data value assigned to that element is the
sum of all values associated with that pair. If any element of the rowindex or colindex array is
greater than the specified values in num_rows, num_cols, respectively, then an exception is thrown.

Arguments

mwSize rowindex_size Size of rowindex array
mwIndex* rowindex Array of row indices of non-zero elements
mwSize colindex_size Size of colindex array
mwIndex* colindex Array of column indices of non-zero elements
mwSize data_size Size of data array
mxDouble* rdata Real part of data associated with non-zero row

and column indices
mxDouble* idata Imaginary part of data associated with non-zero

row and column indices
mwSize num_rows Number of rows in matrix
mwSize num_cols Number of columns in matrix
mwSize nzmax Reserved storage for sparse matrix. If nzmax is

zero, storage will be set to
max{rowindex_size, colindex_size,
data_size}.

Example

This example constructs a complex tridiagonal matrix:

double rdata[] =
 {2.0, -1.0, -1.0, 2.0, -1.0, -1.0, 2.0, -1.0, -1.0, 2.0};
double idata[] =
 {20.0, -10.0, -10.0, 20.0, -10.0, -10.0, 20.0, -10.0,
 -10.0, 20.0};
mwIndex row_tridiag[] =
 {1, 2, 1, 2, 3, 2, 3, 4, 3, 4};
mwIndex col_tridiag[] =
 {1, 1, 2, 2, 2, 3, 3, 3, 4, 4};

 mwArray

A-29

mwArray mysparse = mwArray::NewSparse(10, row_tridiag,
 10, col_tridiag,
 10, rdata,
 idata, 4, 4, 10);
std::cout << mysparse << std::endl;

It displays the following output to the screen:

(1,1) 2.0000 +20.0000i
(2,1) -1.0000 -10.0000i
(1,2) -1.0000 -10.0000i
(2,2) 2.0000 +20.0000i
(3,2) -1.0000 -10.0000i
(2,3) -1.0000 -10.0000i
(3,3) 2.0000 +20.0000i
(4,3) -1.0000 -10.0000i
(3,4) -1.0000 -10.0000i
(4,4) 2.0000 +20.0000i

static mwArray NewSparse(mwSize rowindex_size, const mwIndex* rowindex, mwSize
colindex_size, const mwIndex* colindex, mwSize data_size, const mxDouble* rdata, const
mxDouble* idata, mwSize nzmax)
Description

Creates complex sparse matrix of type double with number of rows and columns inferred from input
data.

The lengths of input row and column index and data arrays must all be the same or equal to 1. In the
case where any of these arrays are equal to 1, the value is repeated through out the construction of
the matrix.

If the same row/column pair occurs more than once, the data value assigned to that element is the
sum of all values associated with that pair. The number of rows and columns in the created matrix are
calculated form the input rowindex and colindex arrays as num_rows = max{rowindex},
num_cols = max{colindex}.

Arguments

mwSize rowindex_size Size of rowindex array
mwIndex* rowindex Array of row indices of non-zero elements
mwSize colindex_size Size of colindex array
mwIndex* colindex Array of column indices of non-zero elements
mwSize data_size Size of data array
mxDouble* rdata Real part of data associated with non-zero row

and column indices
mxDouble* idata Imaginary part of data associated with non-zero

row and column indices

A mwArray

A-30

mwSize nzmax Reserved storage for sparse matrix. If nzmax is
zero, storage will be set to
max{rowindex_size, colindex_size,
data_size}.

Example

This example constructs a complex matrix by inferring dimensions and storage allocation from the
input data.

mwArray mysparse =
 mwArray::NewSparse(10, row_tridiag,
 10, col_tridiag,
 10, rdata, idata,
 0);
std::cout << mysparse << std::endl;

(1,1) 2.0000 +20.0000i
(2,1) -1.0000 -10.0000i
(1,2) -1.0000 -10.0000i
(2,2) 2.0000 +20.0000i
(3,2) -1.0000 -10.0000i
(2,3) -1.0000 -10.0000i
(3,3) 2.0000 +20.0000i
(4,3) -1.0000 -10.0000i
(3,4) -1.0000 -10.0000i
(4,4) 2.0000 +20.0000i

static mwArray NewSparse(mwSize rowindex_size, const mwIndex* rowindex, mwSize
colindex_size, const mwIndex* colindex, mwSize data_size, const mxLogical* rdata, mwSize
num_rows, mwSize num_cols, mwSize nzmax)
Description

Creates logical sparse matrix with specified number of rows and columns.

The lengths of input row and column index and data arrays must all be the same or equal to 1. In the
case where any of these arrays are equal to 1, the value is repeated throughout the construction of
the matrix.

If the same row/column pair occurs more than once, the data value assigned to that element is the
sum of all values associated with that pair. If any element of the rowindex or colindex array is
greater than the specified values in num_rows, num_cols, respectively, then an exception is thrown.

Arguments

mwSize rowindex_size Size of rowindex array
mwIndex* rowindex Array of row indices of non-zero elements
mwSize colindex_size Size of colindex array
mwIndex* colindex Array of column indices of non-zero elements
mwSize data_size Size of data array
mxLogical* rdata Data associated with non-zero row and column

indices

 mwArray

A-31

mwSize num_rows Number of rows in matrix
mwSize num_cols Number of columns in matrix
mwSize nzmax Reserved storage for sparse matrix. If nzmax is

zero, storage will be set to
max{rowindex_size, colindex_size,
data_size}.

Example

This example creates a sparse logical 4-by-4 tridiagonal matrix, assigning true to each non-zero
value:

mxLogical one = true;
mwIndex row_tridiag[] =
 {1, 2, 1, 2, 3,
 2, 3, 4, 3, 4};
mwIndex col_tridiag[] =
 {1, 1, 2, 2, 2,
 3, 3, 3, 4, 4};

mwArray mysparse =
 mwArray::NewSparse(10, row_tridiag,
 10, col_tridiag,
 1, &one,
 4, 4, 10);
std::cout << mysparse << std::endl;

(1,1) 1
(2,1) 1
(1,2) 1
(2,2) 1
(3,2) 1
(2,3) 1
(3,3) 1
(4,3) 1
(3,4) 1
(4,4) 1

static mwArray NewSparse(mwSize rowindex_size, const mwIndex* rowindex, mwSize
colindex_size, const mwIndex* colindex, mwSize data_size, const mxLogical* rdata, mwSize
nzmax)
Description

Creates logical sparse matrix with number of rows and columns inferred from input data.

The lengths of input row and column index and data arrays must all be the same or equal to 1. In the
case where any of these arrays are equal to 1, the value is repeated through out the construction of
the matrix.

The number of rows and columns in the created matrix are calculated form the input rowindex and
colindex arrays as num_rows = max {rowindex}, num_cols = max {colindex}.

A mwArray

A-32

Arguments

mwSize rowindex_size Size of rowindex array
mwIndex* rowindex Array of row indices of non-zero elements
mwSize colindex_size Size of colindex array
mwIndex* colindex Array of column indices of non-zero elements
mwSize data_size Size of data array
mxLogical* rdata Data associated with non-zero row and column

indices
mwSize nzmax Reserved storage for sparse matrix. If nzmax is

zero, storage will be set to
max{rowindex_size, colindex_size,
data_size}.

Example

This example uses the data from the first example, but allows the number of rows, number of
columns, and allocated storage to be calculated from the input data:

mwArray mysparse =
 mwArray::NewSparse(10, row_tridiag,
 10, col_tridiag,
 1, &one,
 0);
std::cout << mysparse << std::endl;

(1,1) 1
(2,1) 1
(1,2) 1
(2,2) 1
(3,2) 1
(2,3) 1
(3,3) 1
(4,3) 1
(3,4) 1
(4,4) 1

static mwArray NewSparse (mwSize num_rows, mwSize num_cols, mwSize nzmax,
mxClassID mxID, mxComplexity cmplx = mxREAL)
Description

Creates an empty sparse matrix. All elements in an empty sparse matrix are initially zero, and the
amount of allocated storage for non-zero elements is specified by nzmax.

Arguments

mwSize num_rows Number of rows in matrix
mwSize num_cols Number of columns in matrix
mwSize nzmax Reserved storage for sparse matrix

 mwArray

A-33

mxClassID mxID Type of data to store in matrix. Currently, sparse
matrices of type double precision and logical
are supported. Pass mxDOUBLE_CLASS to create a
double precision sparse matrix. Pass
mxLOGICAL_CLASS to create a logical sparse
matrix.

mxComplexity cmplx Complexity of matrix. Pass mxCOMPLEX to create
a complex sparse matrix and mxREAL to create a
real sparse matrix. This argument may be
omitted, in which case the default complexity is
real

Example

This example constructs a real 3-by-3 empty sparse matrix of type double with reserved storage for
4 non-zero elements:

mwArray mysparse = mwArray::NewSparse
 (3, 3, 4, mxDOUBLE_CLASS);
std::cout << mysparse << std::endl;

All zero sparse: 3-by-3

static double GetNaN()

Description

Get value of NaN (Not-a-Number).

Call mwArray::GetNaN to return the value of NaN for your system. NaN is the IEEE arithmetic
representation for Not-a-Number. Certain mathematical operations return NaN as a result, for
example:

• 0.0/0.0
• Inf-Inf

The value of NaN is built in to the system; you cannot modify it.

Example

double x = mwArray::GetNaN();

static double GetEps()

Description

Returns the value of the MATLAB eps variable. This variable is the distance from 1.0 to the next
largest floating-point number. Consequently, it is a measure of floating-point accuracy. The MATLAB
pinv and rank functions use eps as a default tolerance.

Example

double x = mwArray::GetEps();

A mwArray

A-34

static double GetInf()

Description

Returns the value of the MATLAB internal Inf variable. Inf is a permanent variable representing
IEEE arithmetic positive infinity. The value of Inf is built into the system; you cannot modify it.

Operations that return Inf include

• Division by 0. For example, 5/0 returns Inf.
• Operations resulting in overflow. For example, exp(10000) returns Inf because the result is too

large to be represented on your machine.

Example

double x = mwArray::GetInf();

static bool IsFinite(double x)

Description

Determine whether or not a value is finite. A number is finite if it is greater than -Inf and less than
Inf.

Arguments

double x Value to test for finiteness

Example

bool x = mwArray::IsFinite(1.0);

static bool IsInf(double x)

Description

Determines whether or not a value is equal to infinity or minus infinity. MATLAB stores the value of
infinity in a permanent variable named Inf, which represents IEEE arithmetic positive infinity. The
value of the variable, Inf, is built into the system; you cannot modify it.

Operations that return infinity include

• Division by 0. For example, 5/0 returns infinity.
• Operations resulting in overflow. For example, exp(10000) returns infinity because the result is

too large to be represented on your machine. If the value equals NaN (Not-a-Number), then
mxIsInf returns false. In other words, NaN is not equal to infinity.

Arguments

double x Value to test for infiniteness

Example

bool x = mwArray::IsInf(1.0);

 mwArray

A-35

static bool IsNaN(double x)

Description

Determines whether or not the value is NaN. NaN is the IEEE arithmetic representation for Not-a-
Number. NaN is obtained as a result of mathematically undefined operations such as

• 0.0/0.0
• Inf-Inf

The system understands a family of bit patterns as representing NaN. In other words, NaN is not a
single value, rather it is a family of numbers that the MATLAB software (and other IEEE-compliant
applications) use to represent an error condition or missing data.

Arguments

double x Value to test for NaN

Example

bool x = mwArray::IsNaN(1.0);

Operators
mwArray operator()(mwIndex i1, mwIndex i2, mwIndex i3, ...,)

Description

Fetches a single element at a specified index. The index is passed as a comma-separated list of 1-
based indices. This operator is overloaded to support 1 through 32 indices. The valid number of
indices that can be passed in is either 1 (single subscript indexing) or NumberOfDimensions()
(multiple subscript indexing). In single subscript indexing the element at the specified 1-based offset
is returned, accessing data in column-wise order. In multiple subscript indexing the index list is used
to access the specified element. The valid range for indices is
1 <= index <= NumberOfElements(), for single subscript indexing. For multiple subscript
indexing, the ith index has the valid range: 1 <= index[i] <= GetDimensions().Get(1, i).
An mwException is thrown if an invalid number of indices is passed in or if any index is out of
bounds.

Arguments

mwIndex i1, mwIndex i2, mwIndex
i3, ...,

Comma-separated list of input indices

Example

double data[4] = {1.0, 2.0, 3.0, 4.0};
double x;
mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(data, 4);
x = a(1,1);
x = a(1,2);
x = a(2,2);

A mwArray

A-36

mwArray operator()(const char* name, mwIndex i1, mwIndex i2, mwIndex i3, ...,)

Description

Fetches a single element at a specified field name and index. This method may only be called on an
array that is of type mxSTRUCT_CLASS. An mwException is thrown if the underlying array is not a
struct array. The field name passed must be a valid field name in the struct array. The index is
passed by first passing the number of indices, followed by an array of 1-based indices. This operator
is overloaded to support 1 through 32 indices. The valid number of indices that can be passed in is
either 1 (single subscript indexing) or NumberOfDimensions() (multiple subscript indexing). In
single subscript indexing the element at the specified 1-based offset is returned, accessing data in
column-wise order. In multiple subscript indexing the index list is used to access the specified
element. The valid range for indices is 1 <= index <= NumberOfElements(), for single subscript
indexing. For multiple subscript indexing, the ith index has the valid range:
1 <= index[i] <= GetDimensions().Get(1, i). An mwException is thrown if an invalid
number of indices is passed in or if any index is out of bounds.

Arguments

char* name Null terminated string containing the field name
to get

mwIndex i1, mwIndex i2, mwIndex
i3, ...,

Comma-separated list of input indices

Example

const char* fields[] = {"a", "b", "c"};
int index[2] = {1, 1};
mwArray a(1, 1, 3, fields);
mwArray b = a("a", 1, 1);
mwArray b = a("b", 1, 1);

mwArray& operator=(const <type>& x)

Description

Sets a single scalar value. This operator is overloaded for all numeric and logical types.

Arguments

const <type>& x Value to assign

Example

mwArray a(2, 2, mxDOUBLE_CLASS);
a(1,1) = 1.0;
a(1,2) = 2.0;
a(2,1) = 3.0;
a(2,2) = 4.0;

const mwArray operator()(mwIndex i1, mwIndex i2, mwIndex i3, ...,) const

Description

Fetches a single scalar value. This operator is overloaded for all numeric and logical types.

 mwArray

A-37

Arguments

mwIndex i1, mwIndex i2, mwIndex
i3, ...,

Comma-separated list of input indices

Example

double data[4] = {1.0, 2.0, 3.0, 4.0};
double x;
mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(data, 4);
x = (double)a(1,1);
x = (double)a(1,2);
x = (double)a(2,1);
x = (double)a(2,2);

std::ostream::operator<<(const mwArray &)
Description

Write mwArray to output stream. The output has the same format as the output when a variable's
name is typed at the MATLAB command prompt. See ToString().

Introduced in R2013b

A mwArray

A-38

C++ MATLAB Data API

9

matlab::cpplib::initMATLABApplication
Start the MATLAB Runtime and initialize its application state

Description
std::shared_ptr<MATLABApplication>
initMATLABApplication(matlab::cpplib::MATLABApplicationMode mode, const
std::vector<std::u16string>& options = std::vector<std::u16string>())

matlab.cpplib.initMATLABApplication accepts as input mode and an optional array of startup
options. It returns a shared pointer to a MATLABApplication object. The shared pointer is passed to
the function matlab::cpplib::initMATLABLibrary, which returns a unique pointer to a user
written library. This unique pointer is then used to call MATLAB functions from the library

A process should call this method only once.

Parameters
MATLABApplicationMod
e mode

Mode in which to start application:

• MATLABApplicationMode::IN_PROCESS
• MATLABApplicationMode::OUT_OF_PROCESS

const
std::vector<std::u16
string>& options

Start up options used to start a MATLAB Runtime. They include:

• -nodisplay: Starts the MATLAB Runtime without display
functionality on Linux.

• -nojvm: Disables the Java Virtual Machine, which is enabled by
default.

• -logfile filepath: Writes to the log file with path filepath. -
logfile and filepath must be specified as separate consecutive
arguments.

Return Value
std::shared_ptr<MATL
ABApplication>

Pointer to a MATLABApplication object that encapsulates the
application state.

Exceptions
matlab::cpplib
::ApplicationL
aunchError

The function failed to start.

9 C++ MATLAB Data API

9-2

Examples
Start MATLAB Runtime In-Process, with Default Runtime Options

std::shared_ptr<MATLABApplication> appPtr = initMATLABApplication(MATLABApplicationMode::IN_PROCESS);

Start MATLAB Runtime Out-Of-Process, Without a Java Virtual Machine

std::vector<std::string> opts = {"-nojvm"};
std::shared_ptr<MATLABApplication> appPtr = initMATLABApplication(MATLABApplicationMode::OUT_OF_PROCESS, opts);

Start MATLAB Runtime In-Process, and Generate a Log File

std::vector<std::u16string> opts = {u"-logfile",
 u"C:\\somepath\\matlab_app.log"};
std::shared_ptr<MATLABApplication> appPtr = initMATLABApplication(MATLABApplicationMode::IN_PROCESS, opts);

See Also
matlab::cpplib::MATLABLibrary::feval |
matlab::cpplib::MATLABLibrary::fevalAsync |
matlab::cpplib::MATLABLibrary::waitForFiguresToClose |
matlab::cpplib::convertUTF16StringToUTF8String |
matlab::cpplib::convertUTF8StringToUTF16String |
matlab::cpplib::initMATLABLibrary | matlab::cpplib::initMATLABLibraryAsync |
matlab::cpplib::runMain

Introduced in R2018a

 matlab::cpplib::initMATLABApplication

9-3

matlab::cpplib::runMain
Execute a function with its input arguments within the main function

Description
int runMain(std::function<int(std::shared_ptr<MatlabApplication>, int, const
char**)>std::shared_ptr<MatlabApplication>&& appsession, int argc, const char
**argv);

Execute a function with its input arguments within the main function. matlab.cpplib.runMain
accepts as input the function you want to execute, an instance of MATLABApplication, and the
inputs to the function you want to execute. It returns as output a code indicating the success or
failure of execution.

This function is used specially on macOS to fulfill the requirements of the Cocoa API. It can be used
on Windows and Linux platforms as well.

Parameters
std::function<int(st
d::shared_ptr<MATLAB
Application>, int,
const char**)> func

A std::function instance that takes three parameters (namely, a
pointer to a MATLABApplication object, an int representing the
number of input arguments, and a const char** representing the input
arguments themselves) and returns an int.

std::shared_ptr<MATL
ABApplication>&& app

Instance of MATLABApplication, passed as rvalue.

int argc Number of input arguments from the command line.
const char **argv Input arguments array.

Return Value
int Return code indicating success (by convention: 0), or failure (by

convention, a non-zero number).

Examples
Move the MATLABApplication Object into runMain and Terminate It

int myMainFunc(std::shared_ptr<mc::MATLABApplication> app,
 const int argc, const char * argv[])
 {
 try {
 // initialize library, call feval, etc.
 } catch(const std::exception & exc) {
 std::cerr << exc.what() << std::endl;
 return -1;
 }
 return 0; // no error
 }

9 C++ MATLAB Data API

9-4

 int main(const int argc, const char * argv[])
 {
 std::vector<std::u16string> options ;
 auto matlabApplication = mc::initMATLABApplication(
 mc::MATLABApplicationMode::IN_PROCESS,options);
 return mc::runMain(myMainFunc, std::move(matlabApplication), argc, argv);
 }

See Also
matlab::cpplib::MATLABLibrary::feval |
matlab::cpplib::MATLABLibrary::fevalAsync |
matlab::cpplib::MATLABLibrary::waitForFiguresToClose |
matlab::cpplib::convertUTF16StringToUTF8String |
matlab::cpplib::convertUTF8StringToUTF16String |
matlab::cpplib::initMATLABApplication | matlab::cpplib::initMATLABLibrary |
matlab::cpplib::initMATLABLibraryAsync

Introduced in R2018a

 matlab::cpplib::runMain

9-5

matlab::cpplib::convertUTF8StringToUTF16String
Convert UTF-8 string to UTF-16 string

Description
std::u16string & ustr convertUTF8StringToUTF16String(const std::string & str)

Convert a UTF-8 string (ASCII or Unicode®) to a UTF-16 string. Use this function to convert ASCII
strings into the form required to represent start-up options (passed to initMATLABApplication),
or function names or matlab::data::array.

Prefixing u to a literal char * string is a more concise alternative that achieves the same effect as
convertUTF8StringToUTF16String when a literal string is passed as a parameter. For example,
you could write initMATLABLibrary(app, u"mylib"); rather than the lengthier
initMATLABLibrary(app, convertUTF8StringToUTF16String("mylib")); and get the same
results.

Note Prefixing u is not supported by Visual C++® 2013.

Parameters
const std::string &
str

A UTF-8 (possibly ASCII) string.

Return Value
std::u16string A UTF-16-encoded string.

Exceptions
std::range_err
or

Input is not a valid UTF-8 string.

Examples
Convert UTF-8 String to UTF-16 String

auto app = initMATLABApplication(MATLABApplicationMode::IN_PROCESS);
const char * libName = getLibNameFromConfigFile(); // imaginary user-defined function
auto mylib = initMATLABLibrary(app, convertUTF8StringToUTF16String(libName));

See Also
matlab::cpplib::MATLABLibrary::feval |
matlab::cpplib::MATLABLibrary::fevalAsync |
matlab::cpplib::MATLABLibrary::waitForFiguresToClose |
matlab::cpplib::convertUTF16StringToUTF8String |

9 C++ MATLAB Data API

9-6

matlab::cpplib::initMATLABApplication | matlab::cpplib::initMATLABLibrary |
matlab::cpplib::initMATLABLibraryAsync | matlab::cpplib::runMain

Introduced in R2018a

 matlab::cpplib::convertUTF8StringToUTF16String

9-7

matlab::cpplib::convertUTF16StringToUTF8String
Convert UTF-16 string to UTF-8 string

Description
std::string & str convertUTF16StringToUTF8String(const std::u16string & ustr)

Convert a UTF-16 string to a UTF-8 string. Since ASCII is a subset of UTF-8 encoding, the output is
ASCII content as long as no non-ASCII characters are present in the input.

Parameters
const std::u16string
& ustr

A UTF-16 string.

Return Value
std::string A UTF-8 string.

Exceptions
std::range_err
or

Input is not valid UTF-16 string.

Examples
Convert a UTF-16 String to UTF-8 String

auto app = initMATLABApplication(MATLABApplicationMode::OUT_OF_PROCESS);
auto mylib = initMATLABLibrary(app, convertUTF8StringToUTF16String("mylib"));
std::u16string ustr = mylib->feval<std::u16string>("get_const_str");
std::string str = convertUTF16StringToUTF8String(ustr);

See Also
matlab::cpplib::MATLABLibrary::feval |
matlab::cpplib::MATLABLibrary::fevalAsync |
matlab::cpplib::MATLABLibrary::waitForFiguresToClose |
matlab::cpplib::convertUTF8StringToUTF16String |
matlab::cpplib::initMATLABApplication | matlab::cpplib::initMATLABLibrary |
matlab::cpplib::initMATLABLibraryAsync | matlab::cpplib::runMain

Introduced in R2017b

9 C++ MATLAB Data API

9-8

matlab::cpplib::initMATLABLibrary
Initialize a library of MATLAB functions packaged in a deployable archive file

Description
std::unique_ptr<MATLABLibrary>
initMATLABLibrary(std::shared_ptr<MATLABApplication> application, const
std::u16string & ctfPath)

Initialize a library of MATLAB functions packaged in a deployable archive (CTF) file, and return a
unique pointer to the library. As parameters, it takes a shared pointer to a MATLABApplication
instance and a path to the CTF.

The path to the deployable archive is either relative or absolute. If the path is relative, the following
paths are prepended in the order specified below until the file is found or all possibilities are
exhausted.

• the value of the environment variable CPPSHARED_BASE_CTF_PATH, if defined
• the working folder
• the folder where the executable is located
• on Mac: the folder three levels above the folder where the executable is located (for example, if

the executable is generic_interface/foo_generic.app/Contents/MacOS/foo, the folder
used is generic_interface)

If the library is found, it is initialized and a pointer to it is returned. Otherwise,an exception is
thrown.

Parameters
std::shared_ptr<MATL
ABApplication>
application

Pointer to a MATLABApplication object returned from
initMATLABApplication.

const std::u16string
& ctfPath

Path (relative or absolute) to archive.

Return Value
std::unique_ptr<MATL
ABLibrary>

Pointer to a MATLABLibrary object that is used to call functions from the
library, feval etc.

Exceptions
matlab::cpplib
::LibNotFound

No library with the given name is found on the shared library path.

matlab::cpplib
::LibInitErr

Library cannot be initialized.

 matlab::cpplib::initMATLABLibrary

9-9

Examples
Initialize MATLABLibrary

std::vector<std::u16string> opts = {u"-nojvm"};
auto matlabPtr = initMATLABApplication(MATLABApplicationMode::IN_PROCESS, opts);
auto libAstro = initMATLABLibrary(matlabPtr, convertUTF8StringToUTF16String("astro.ctf"));

See Also
matlab::cpplib::MATLABLibrary::feval |
matlab::cpplib::MATLABLibrary::fevalAsync |
matlab::cpplib::MATLABLibrary::waitForFiguresToClose |
matlab::cpplib::convertUTF16StringToUTF8String |
matlab::cpplib::convertUTF8StringToUTF16String |
matlab::cpplib::initMATLABApplication | matlab::cpplib::initMATLABLibraryAsync |
matlab::cpplib::runMain

Introduced in R2018a

9 C++ MATLAB Data API

9-10

matlab::cpplib::initMATLABLibraryAsync
Initialize a library of MATLAB function asynchronously

Description
FutureResult<std::shared_ptr<MATLABLib>>
initMATLABLibraryAsync(MATLABApplication & application, const std::u16string
& ctfPath)

Initialize a library of MATLAB function asynchronously, to obtain a pointer to a freshly initialized C++
shared library once initialization is complete.

Parameters
MATLABApplication &
application

MATLAB Application object returned from initMATLABApplication.

const std::u16string
& ctfPath

Name of library. If path is omitted, it is assumed to be in the current
folder. For information on how to use ctfPath, see
matlab::cpplib::initMATLABLibrary.

Return Value
FutureResult<std::sh
ared_ptr<MATLABLib>>

A std::future from which the status of initialization process, or a
library pointer (once initialization is complete) can be obtained.

Exceptions
matlab::cpplib
::LibNotFound

No library with the given name found on the shared library path.

matlab::cpplib
::LibInitErr

Library cannot be initialized.

Examples
Initialize MATLABLibrary Asynchronously, and Wait Until It Initializes
auto future = mc::initMatlabLibraryAsync(matlabApplication,
 mc::convertUTF8StringToUTF16String("libdoubleasync.ctf"));
if (!future.valid()) {
 throw std::future_error(std::future_errc::no_state);
}
std::future_status status;
do {
 status = future.wait_for(std::chrono::milliseconds(200));
 if (status == std::future_status::timeout) {
 std::cout << "Library initialization is in progress.\n";
 } else if (status == std::future_status::ready) {
 std::cout << "Library initialization has completed.\n";

 matlab::cpplib::initMATLABLibraryAsync

9-11

 }
 std::this_thread::sleep_for(std::chrono::seconds(1));
} while (status != std::future_status::ready);
auto lib = future.get();

See Also
matlab::cpplib::MATLABLibrary::feval |
matlab::cpplib::MATLABLibrary::fevalAsync |
matlab::cpplib::MATLABLibrary::waitForFiguresToClose |
matlab::cpplib::convertUTF16StringToUTF8String |
matlab::cpplib::convertUTF8StringToUTF16String |
matlab::cpplib::initMATLABApplication | matlab::cpplib::initMATLABLibrary |
matlab::cpplib::runMain

Introduced in R2018a

9 C++ MATLAB Data API

9-12

matlab::cpplib::MATLABLibrary::feval
Execute a MATLAB function from a deployable archive

Description
Execute a function with 1 output MATLAB Data Array argument; 1 input MATLAB Data
Arrray argument

function name as u16string

matlab::data::Array feval(const std::u16string &function, const
matlab::data::Array &arg, const std::shared_ptr<StreamBuffer> &output =
std::shared_ptr<StreamBuffer>(), const std::shared_ptr<StreamBuffer> &error =
std::shared_ptr<StreamBuffer>())

function name as string

matlab::data::Array feval(const std::string &function, const
matlab::data::Array &arg, const std::shared_ptr<StreamBuffer> &output =
std::shared_ptr<StreamBuffer>(), const std::shared_ptr<StreamBuffer> &error =
std::shared_ptr<StreamBuffer>())

Execute a function with 1 output MATLAB Data Array argument; 0, 2, or more input
MATLAB Data Array arguments

function name as u16string

matlab::data::Array feval(const std::u16string &function, const
std::vector<matlab::data::Array> &args, const std::shared_ptr<StreamBuffer>
&output = std::shared_ptr<StreamBuffer>(), const
std::shared_ptr<StreamBuffer> &error = std::shared_ptr<StreamBuffer>())

function name as string

matlab::data::Array feval(const std::string &function, const
std::vector<matlab::data::Array> &args, const std::shared_ptr<StreamBuffer>
&output = std::shared_ptr<StreamBuffer>(), const
std::shared_ptr<StreamBuffer> &error = std::shared_ptr<StreamBuffer>())

Execute a function with 0, 2, or more output MATLAB Data Array arguments; any number of
input MATLAB Data Array arguments

function name as u16string

std::vector<matlab::data::Array> feval(const std::u16string &function, const
size_t nlhs, const std::vector<matlab::data::Array> &args, const
std::shared_ptr<StreamBuffer> &output = std::shared_ptr<StreamBuffer>(),
const std::shared_ptr<StreamBuffer> &error = std::shared_ptr<StreamBuffer>())

function name as string

 matlab::cpplib::MATLABLibrary::feval

9-13

std::vector<matlab::data::Array> feval(const std::string &function, const
size_t nlhs, const std::vector<matlab::data::Array> &args, const
std::shared_ptr<StreamBuffer> &output = std::shared_ptr<StreamBuffer>(),
const std::shared_ptr<StreamBuffer> &error = std::shared_ptr<StreamBuffer>())

Execute a function with native input and output arguments

function name as u16string

template<class ReturnType, typename...RhsArgs> ReturnType feval(const
std::u16string &function, RhsArgs&&... rhsArgs)

function name as string

template<class ReturnType, typename...RhsArgs> ReturnType feval(const
std::string &function,RhsArgs&&... rhsArgs)

Execute a function with native input and output arguments, with output redirection

function name as u16string

template<class ReturnType, typename...RhsArgs> ReturnType feval(const
std::u16string &function, const std::shared_ptr<StreamBuffer> &output, const
std::shared_ptr<StreamBuffer> &error, RhsArgs&&... rhsArgs)

function name as string

template<class ReturnType, typename...RhsArgs> ReturnType feval(const
std::string &function, const std::shared_ptr<StreamBuffer> &output, const
std::shared_ptr<StreamBuffer> &error, RhsArgs&&... rhsArgs)

Call a packaged MATLAB function within a C++ shared library:

• Without redirection of standard output or standard error
• With redirection of standard output
• With redirection of standard output and standard error

LhsItem One of the following:

• Native scalar
• std::vector of a native type
• matlab::data::Array
• std::tuple of any combination of any of the previously mentioned

possibilities.
RhsArgs A sequence of zero or more arguments which are one of the following:

• Native scalar
• std::vector of a native type
• matlab::data::Array

StreamBuffer std::basic_streambuf<char16_t>

MATLABLibrary::feval calls a packaged MATLAB function within a C++ shared library and passes
the name of the function, followed by the arguments. If the specified function cannot be found in the

9 C++ MATLAB Data API

9-14

library, an exception is thrown. By default, the function returns either a single
matlab::data::Array object (if one output argument is expected) or a vector of
matlab::data::Array objects (if zero or multiple output arguments are expected). In the former
case, the vector is empty. By specifying a template argument, you can specify an alternative return
type, which can be a primitive type, or a vector of primitive types, or a tuple of multiple instances of
either.

Supported native types:

• bool
• int8_t
• int16_t
• int32_t
• int64_t
• uint8_t
• uint16_t
• uint32_t
• uint64_t
• float
• double
• std:string
• std::u16string
• std::complex<T> where T is one of the numeric types.

• Native C++ data passed as input is converted into the corresponding MATLAB types.
• std::vector is converted into a column array in MATLAB.
• The result of a MATLAB function is converted into the expected C++ data type if there is no loss

of range.
• Otherwise, an exception is thrown.

Parameters
const std::u16string &function

const std::string &function

The name of a compiled MATLAB function to be
evaluated specified either as u16string or
string.

const size_t nlhs The number of return values.
const
std::vector<matlab::data::Array>& args

Arguments used by the MATLAB function when
more than one is specified.

const matlab::data::Array>& arg Argument used by the MATLAB function with
single input.

 matlab::cpplib::MATLABLibrary::feval

9-15

const RhsArgs& rhsArgs Template parameter pack consisting of a
sequence of zero or more arguments, each of
which is one of the following:

• a bare native type (see list of supported native
types)

• a std::vector of a bare native type
• a matlab::data::Array

const std::shared_ptr<StreamBuffer>&
output

String buffer used to store the standard output
from the MATLAB function.

const std::shared_ptr<StreamBuffer>&
error

String buffer used to store error output from the
MATLAB function.

Return Value
Zero or one of the following, or a tuple of any combination of them:

A native scalar type
std::vector
matlab::data::Array

Exceptions
matlab::cpplib::CanceledException The MATLAB function is canceled.
matlab::cpplib::InterruptedException The MATLAB function is interrupted.
matlab::cpplib::MATLABNotAvailableErro
r

The MATLAB session is not available.

matlab::cpplib::MATLABSyntaxError The MATLAB function returned a syntax error.
matlab::cpplib::MATLABExecutionError The function returns a MATLAB Runtime error.
matlab::cpplib::TypeConversionError The result of a MATLAB function cannot be

converted into a user-specific type.

Examples
Execute a User-Written MATLAB Function mysqrt in a C++ Shared Library

// This example assumes that mysqrt is a packaged user-written function that
// calls MATLAB's sqrt, which returns the square root of each element in
// the array that is passed to it.

auto matlabPtr = initMATLABApplication(MATLABApplicationMode::IN_PROCESS, opts);
auto libPtr = initMATLABLibrary(*matlabPtr, u"mylib.ctf");

// Initialize a matlab::data::TypedArray with three elements.
matlab::data::TypedArray<double> doubles = factory.createArray<double>({1.0, 4.0, 9.0});

// Retrieve the result of the mysqrt call. Since the output
// argument is a matlab::data::Array, feval does not require any template

9 C++ MATLAB Data API

9-16

// arguments.
matlab::data::Array mda = libPtr->feval(u"mysqrt", doubles);

// Now we retrieve the first element of that matlab::data::Array.
double d1 = mda[0];
std::assert(d1 == 1.0, "unexpected value");

// Pass a native type (a double) directly to mysqrt. Specify that you want
// a double (rather than a matlab::data::Array) as the return type.
double d2 = libPtr->feval<double>(u"mysqrt", 4.0);
std::assert(d2 == 2.0, "unexpected value");

See Also
matlab::cpplib::MATLABLibrary::fevalAsync |
matlab::cpplib::MATLABLibrary::waitForFiguresToClose |
matlab::cpplib::convertUTF16StringToUTF8String |
matlab::cpplib::convertUTF8StringToUTF16String |
matlab::cpplib::initMATLABApplication | matlab::cpplib::initMATLABLibrary |
matlab::cpplib::initMATLABLibraryAsync | matlab::cpplib::runMain

Introduced in R2018a

 matlab::cpplib::MATLABLibrary::feval

9-17

matlab::cpplib::MATLABLibrary::fevalAsync
Execute a MATLAB function from a deployable archive asynchronously

Description
Execute a function with 1 output MATLAB Data Array argument and 1 input MATLAB Data
Array argument

function name as u16string

FutureResult<matlab::data::Array> fevalAsync(const std::u16string &function,
const matlab::data::Array &arg, const std::shared_ptr<StreamBuffer> &output =
std::shared_ptr<StreamBuffer>(), const std::shared_ptr<StreamBuffer> &error =
std::shared_ptr<StreamBuffer>())

function name as string

FutureResult<matlab::data::Array> fevalAsync(const std::string &function,
const matlab::data::Array &arg, const std::shared_ptr<StreamBuffer> &output =
std::shared_ptr<StreamBuffer>(), const std::shared_ptr<StreamBuffer> &error =
std::shared_ptr<StreamBuffer>())

Execute a function with 1 output MATLAB Data Array argument and any number of input
MATLAB Data Array arguments

function name as u16string

FutureResult<matlab::data::Array> fevalAsync(const std::u16string &function,
const std::vector<matlab::data::Array> &args, const
std::shared_ptr<StreamBuffer> &output = std::shared_ptr<StreamBuffer>(),
const std::shared_ptr<StreamBuffer> &error = std::shared_ptr<StreamBuffer>())

function name as string

FutureResult<matlab::data::Array> fevalAsync(const std::string &function,
const std::vector<matlab::data::Array> &args, const
std::shared_ptr<StreamBuffer> &output = std::shared_ptr<StreamBuffer>(),
const std::shared_ptr<StreamBuffer> &error = std::shared_ptr<StreamBuffer>())

Execute a function with any number of output MATLAB Data Array arguments and any
number of input MATLAB Data Array arguments

function name as u16string

FutureResult<std::vector<matlab::data::Array>> fevalAsync(const
std::u16string &function, const size_t nlhs, const
std::vector<matlab::data::Array> &args, const std::shared_ptr<StreamBuffer>
&output = std::shared_ptr<StreamBuffer>(), const
std::shared_ptr<StreamBuffer> &error = std::shared_ptr<StreamBuffer>())

function name as string

9 C++ MATLAB Data API

9-18

FutureResult<std::vector<matlab::data::Array>> fevalAsync(const std::string
&function, const size_t nlhs, const std::vector<matlab::data::Array> &args,
const std::shared_ptr<StreamBuffer> &output =
std::shared_ptr<StreamBuffer>(), const std::shared_ptr<StreamBuffer> &error =
std::shared_ptr<StreamBuffer>())

Execute a function with native scalar input and output arguments

function name as u16string

template<class ReturnType, typename...RhsArgs>

FutureResult<ReturnType> fevalAsync(const std::u16string &function,
RhsArgs&&... rhsArgs)

function name as string

template<class ReturnType, typename...RhsArgs>

FutureResult<ReturnType> fevalAsync(const std::string &function, RhsArgs&&...
rhsArgs)

Execute a function with native scalar input and output arguments, with output redirection

function name as u16string

template<class ReturnType, typename...RhsArgs>

FutureResult<ReturnType> fevalAsync(const std::u16string &function, const
std::shared_ptr<StreamBuffer> &output, const std::shared_ptr<StreamBuffer>
&error, RhsArgs&&... rhsArgs)

function name as string

template<class ReturnType, typename...RhsArgs>

FutureResult<ReturnType> fevalAsync(const std::string &function, const
std::shared_ptr<StreamBuffer> &output, const std::shared_ptr<StreamBuffer>
&error, RhsArgs&&... rhsArgs)

Call a packaged MATLAB function within a C++ shared library asynchronously:

• Without redirection of standard output or standard error:
• With redirection of standard output:
• With redirection of standard output and standard error:

where,

LhsItem native scalar
RhsArgs A sequence of one or more native scalars.
StreamBuffer std::basic_streambuf<char16_t>

It passes the name of the function, followed by the arguments. If the specified function cannot be
found in the library, an exception is thrown.

 matlab::cpplib::MATLABLibrary::fevalAsync

9-19

Supported native types:

• bool
• int8_t
• int16_t
• int32_t
• int64_t
• uint8_t
• uint16_t
• uint32_t
• uint64_t
• float
• double
• std:string
• std::u16string
• std::complex<T> where T is one of the numeric types.

Parameters
const std::u16string &function

const std::string &function

The name of a compiled MATLAB function to be
evaluated specified either as u16string or
string.

const size_t nlhs The number of return values.
const std::vector<matlab::data::Array>
args

Arguments used by the MATLAB function.

const matlab::data::Array arg Argument used by the MATLAB function with
single input.

const RhsArgs& rhsArgs Template parameter pack consisting of a
sequence of one or more arguments, each of
which is a native scalar.

const std::shared_ptr<StreamBuffer>&
output

String buffer used to store the standard output
from the MATLAB function.

const std::shared_ptr<StreamBuffer>&
error

String buffer used to store error output from the
MATLAB function.

Return Value
FutureResult Takes any of the permissible types for LhsItem.

Exceptions
matlab::cpplib::CanceledException The MATLAB function is canceled.
matlab::cpplib::InterruptedException The MATLAB function is interrupted.

9 C++ MATLAB Data API

9-20

matlab::cpplib::MATLABNotAvailableErro
r

The MATLAB session is not available.

matlab::cpplib::MATLABSyntaxError The MATLAB function returned a syntax error.
matlab::cpplib::MATLABExecutionError The function returns a MATLAB error.
matlab::cpplib::TypeConversionError The result of a MATLAB function cannot be

converted into a user-specific type.

Examples
Execute a User-Written MATLAB Function repeatdouble in a C++ Shared Library
Asynchronously

 / Call the function repeatdouble, which iteratively continues to
 // double a number, printing out results along the way. The
 // (optional) second and third parameters determine, respectively, how
 // many iterations should be performed and how many seconds should
 // elapse between operations. We call the function asynchronously,
 // then call it again (also asynchronously) with a different base
 // number before all the iterations from the first call have completed.

 // We pass the arguments to the function as C++ native types (namely
 // doubles) rather than a md::Array. The return type is also a native
 // type (a double), so fevalAsync and the FutureResult need to take
 // "double" as a template parameter.
 mc::FutureResult<double> futureA = lib->fevalAsync<double>(
 mc::convertUTF8StringToUTF16String("repeatdouble"), 10.0, 3.0, 0.5);
 mc::FutureResult<double> futureB = lib->fevalAsync<double>(
 mc::convertUTF8StringToUTF16String("repeatdouble"), 11.0, 3.0, 0.5);

 // Get the result once it's ready.
 double resultA = futureA.get();
 double resultB = futureB.get();

See Also
matlab::cpplib::MATLABLibrary::feval |
matlab::cpplib::MATLABLibrary::waitForFiguresToClose |
matlab::cpplib::convertUTF16StringToUTF8String |
matlab::cpplib::convertUTF8StringToUTF16String |
matlab::cpplib::initMATLABApplication | matlab::cpplib::initMATLABLibrary |
matlab::cpplib::initMATLABLibraryAsync | matlab::cpplib::runMain

Introduced in R2018a

 matlab::cpplib::MATLABLibrary::fevalAsync

9-21

matlab::cpplib::MATLABLibrary::waitForFiguresToC
lose
Wait for all figures to close

Description
matlab::cpplib::MATLABLibrary::waitForFiguresToClose method pauses until all figures
in a library have been closed.

See Also
matlab::cpplib::MATLABLibrary::feval |
matlab::cpplib::MATLABLibrary::fevalAsync |
matlab::cpplib::convertUTF16StringToUTF8String |
matlab::cpplib::convertUTF8StringToUTF16String |
matlab::cpplib::initMATLABApplication | matlab::cpplib::initMATLABLibrary |
matlab::cpplib::initMATLABLibraryAsync | matlab::cpplib::runMain

Introduced in R2018a

9 C++ MATLAB Data API

9-22

Workflow: C++ Shared Library using
MATLAB Data API

10

Workflow to Integrate with a C++ Shared Library that Uses the
MATLAB Data API

The workflow to create a C++ shared library that uses the MATLAB Data API can be summarized as
follows:

1 Package your MATLAB code into an archive (.ctf) file using the Library Compiler app.
2 Write C++ driver code using the generic interface. For more information, see “Writing C++

Driver Code Using the C++ MATLAB Data Array API” on page 10-3.
3 Link the driver code against header files provided with MATLAB Runtime.
4 Run your application.

For an example of this workflow, see “Generate a C++ MATLAB Data API Shared Library and Build a
C++ Application”.

See Also

More About
• “Writing C++ Driver Code Using the C++ MATLAB Data Array API” on page 10-3
• “Generate a C++ MATLAB Data API Shared Library and Build a C++ Application”

10 Workflow: C++ Shared Library using MATLAB Data API

10-2

Writing C++ Driver Code Using the C++ MATLAB Data Array
API

The basic workflow for using the generic interface for C++ shared libraries is as follows:

• Call the free function initMATLABApplication, which optionally takes a vector of run time
options like -nojvm and -logfile. The function returns a shared_ptr.

• Initialize a matlab::data::ArrayFactory, which you use to produce matlab::data::Array
objects that you pass into function calls.

• For each library that you initialize, call initMATLABLibrary, which takes two parameters:

• Copy of the shared_ptr that was returned by initMATLABApplication
• Path to the archive (.ctf file)

• To call a function in an initialized library, call feval or fevalAsync on the unique_ptr that was
returned by initMATLABLibrary. There are several overloaded versions of each. They all take
the name of the MATLAB function as the first parameter. However, these differ in terms of
whether they accept and return single matlab::data::Array objects, arrays of
matlab::data::Array, or native types. The forms that return a native type must take the type
as a template parameter.

• To terminate a library, either call reset on its unique_ptr, or allow it to go out of scope.
• To terminate the application, either call reset on its shared_ptr, or allow it to go out of scope.

It does not terminate until all the libraries created underneath it have been terminated or gone
out of scope.

For an example driver file using the C++ MATLAB Data Array API, see matrix_mda.cpp in
matlabroot\extern\examples\compilersdk\c_cpp\matrix.

matrix_mda.cpp

/*==
 *
 * MATRIX_MDA.CPP
 * Sample driver code that uses the generic interface
 * (introduced in R2018a) and MATLAB Data API to call a C++
 * shared library created using the MATLAB Compiler SDK.
 * Demonstrates passing matrices via the MATLAB Data API.
 * Refer to the MATLAB Compiler SDK documentation for more
 * information.
 *
 * Copyright 2017-Present The MathWorks, Inc.
 *
 ==/

// Include the header file required to use the generic
// interface for the C++ shared library generated by the
// MATLAB Compiler SDK.
#include "MatlabCppSharedLib.hpp"
#include <iostream>
#include <numeric> // for iota

namespace mc = matlab::cpplib;
namespace md = matlab::data;

 Writing C++ Driver Code Using the C++ MATLAB Data Array API

10-3

std::u16string convertAsciiToUtf16(const std::string & asciiStr);

template <typename T>
void writeMatrix(std::ostream & ostr, const md::TypedArray<T> & matrix,
md::MemoryLayout layoutOfArray = md::MemoryLayout::ROW_MAJOR);

int mainFunc(std::shared_ptr<mc::MATLABApplication> app,
const int argc, const char * argv[]);

// The main routine. On the Mac, the main thread runs the system code, and
// user code must be processed by a secondary thread. On other platforms,
// the main thread runs both the system code and the user code.
int main(const int argc, const char * argv[])
{
 int ret = 0;
 try {
 auto mode = mc::MATLABApplicationMode::IN_PROCESS;
 const std::string STR_OPTIONS = "-nojvm";
 const std::u16string U16STR_OPTIONS = convertAsciiToUtf16(STR_OPTIONS);
 std::vector<std::u16string> options = {U16STR_OPTIONS};
 auto matlabApplication = mc::initMATLABApplication(mode, options);
 ret = mc::runMain(mainFunc, std::move(matlabApplication), argc, argv);
 // Calling reset() on matlabApplication allows the user to control
 // when it is destroyed, which automatically cleans up its resources.
 // Here, the object would go out of scope and be destroyed at the end
 // of the block anyway, even if reset() were not called.
 // Whether the matlabApplication object is explicitly or implicitly
 // destroyed, initMATLABApplication() cannot be called again within
 // the same process.
 matlabApplication.reset();
 } catch(const std::exception & exc) {
 std::cerr << exc.what() << std::endl;
 return -1;
 }
 return ret;
}

int mainFunc(std::shared_ptr<mc::MATLABApplication> app,
 const int argc, const char * argv[])
{
 try {
 // If using a compiler that supports the u"" prefix to indicate
 // a char16_t *, you could simply pass u"libmatrix.ctf" as
 // the second parameter to initMATLABLibrary(), and would
 // not need to perform an extra step to convert from a
 // narrow string. Visual C++ 2013 does not support the u""
 // prefix, but later versions of Visual C++ do, as do other
 // third-party compilers supported for use with MATLAB.
 const std::string STR_CTF_NAME = "libmatrix.ctf";
 const std::u16string U16STR_CTF_NAME = convertAsciiToUtf16(STR_CTF_NAME);

 // The path to the CTF (library archive file) passed to
 // initMATLABLibrary or initMATLABLibraryAsync may be either absolute
 // or relative. If it is relative, the following will be prepended
 // to it, in turn, in order to find the CTF:
 // - the directory named by the environment variable
 // CPPSHARED_BASE_CTF_PATH, if defined
 // - the working directory

10 Workflow: C++ Shared Library using MATLAB Data API

10-4

 // - the directory where the executable is located
 // - on Mac, the directory three levels above the directory
 // where the executable is located

 // If the CTF is not in one of these locations, do one of the following:
 // - copy the CTF
 // - move the CTF
 // - change the working directory ("cd") to the location of the CTF
 // - set the environment variable to the location of the CTF
 // - edit the code to change the path
 auto lib = mc::initMATLABLibrary(app, U16STR_CTF_NAME);
 md::ArrayFactory factory;
 const size_t NUM_ROWS = 3;
 const size_t NUM_COLS = 3;
 md::TypedArray<double> doubles = factory.createArray<double>({NUM_ROWS, NUM_COLS},
 {1.0, 2.0, 3.0,
 4.0, 5.0, 6.0,
 7.0, 8.0, 9.0});

 // Note that the matrix is interpreted as being in column-major order
 // (the MATLAB convention) rather than row-major order (the C++
 // convention). Thus, the output from the next two lines of code will
 // look like this:
 // The original matrix is:
 // 1 4 7
 // 2 5 8
 // 3 6 9
 // If you want to work with a matrix that looks like this:
 // 1 2 3
 // 4 5 6
 // 7 8 9
 // you can either store the data as follows:
 // md::TypedArray<double> doubles =
 // factory.createArray<double>({NUM_ROWS, NUM_COLS},
 // {1.0, 4.0, 7.0,
 // 2.0, 5.0, 8.0,
 // 3.0, 6.0, 9.0});
 // or apply the MATLAB transpose function to the original matrix.
 std::cout << "The original matrix is: " << std::endl;
 writeMatrix<double>(std::cout, doubles);

 std::vector<md::Array> matrices{doubles, doubles};
 std::cout << "The sum of the matrix with itself is: " << std::endl;
 auto sum = lib->feval("addmatrix", 1, matrices);
 // The feval call returns a vector (of length 1) of md::Array objects.
 writeMatrix<double>(std::cout, sum[0]);

 std::cout << "The product of the matrix with itself is: " << std::endl;
 auto product = lib->feval("multiplymatrix", 1, matrices);
 writeMatrix<double>(std::cout, product[0]);

 std::cout << "The eigenvalues of the original matrix are: " << std::endl;
 std::vector<md::Array>single_matrix{doubles};
 auto eigenvalues = lib->feval("eigmatrix", 1, single_matrix);
 writeMatrix<double>(std::cout, eigenvalues[0]);

 // This part of the code shows how createBuffer and createArrayFromBuffer
 // can be used to convert from row-major to column-major order.

 Writing C++ Driver Code Using the C++ MATLAB Data Array API

10-5

 auto colMajorMatrixBuffer = factory.createBuffer<int>(6);
 // The following call writes the values 100, 101, 102, 103, 104, 105
 // into colMajorMatrixBuffer.
 std::iota(colMajorMatrixBuffer.get(), colMajorMatrixBuffer.get() + 6, 100);
 auto colMajorMatrixArray = factory.createArrayFromBuffer({2, 3},
 std::move(colMajorMatrixBuffer), md::MemoryLayout::COLUMN_MAJOR);
 // OUTPUT:
 // The original contents of the column-major matrix are:
 // 100 102 104
 // 101 103 105
 std::cout << "The original contents of the column-major matrix are: " << std::endl;
 writeMatrix<int>(std::cout, colMajorMatrixArray);
 std::vector<md::Array> colMajorMatrixArrays{colMajorMatrixArray,
 colMajorMatrixArray};

 // OUTPUT:
 // The sum of the column-major matrix with itself is:
 // 200 204 208
 // 202 206 210
 std::cout << "The sum of the column-major matrix with itself is: " << std::endl;
 auto sumOfColMajorMatrixArrays = lib->feval("addmatrix", 1, colMajorMatrixArrays);
 // The feval call returns a vector (of length 1) of md::Array objects.
 writeMatrix<int>(std::cout, sumOfColMajorMatrixArrays[0]);

 auto rowMajorMatrixBuffer = factory.createBuffer<int>(6);
 std::iota(rowMajorMatrixBuffer.get(), rowMajorMatrixBuffer.get() + 6, 100);
 auto rowMajorMatrixArray = factory.createArrayFromBuffer({3, 2},
 std::move(rowMajorMatrixBuffer), md::MemoryLayout::ROW_MAJOR);
 // OUTPUT:
 // The original contents of the row-major matrix are:
 // 100 101
 // 102 103
 // 104 105
 std::cout << "The original contents of the row-major matrix are: " << std::endl;
 writeMatrix<int>(std::cout, rowMajorMatrixArray);
 std::vector<md::Array> rowMajorMatrixArrays{rowMajorMatrixArray, rowMajorMatrixArray};

 // OUTPUT:
 // The sum of the row-major matrix with itself is:
 // 200 202
 // 204 206
 // 208 210
 std::cout << "The sum of the row-major matrix with itself is: " << std::endl;
 auto sumOfRowMajorMatrixArrays = lib->feval("addmatrix", 1, rowMajorMatrixArrays);
 // The feval call returns a vector (of length 1) of md::Array objects.
 writeMatrix<int>(std::cout, sumOfRowMajorMatrixArrays[0]);
 } catch(const std::exception & exc) {
 std::cerr << exc.what() << std::endl;
 return -1;
 }
 return 0;
}

std::u16string convertAsciiToUtf16(const std::string & asciiStr)
{
 return std::u16string(asciiStr.cbegin(), asciiStr.cend());
}

10 Workflow: C++ Shared Library using MATLAB Data API

10-6

template <typename T>
void writeMatrix(std::ostream & ostr, const md::TypedArray<T> & matrix,
 md::MemoryLayout layoutOfArray /*= md::MemoryLayout::ROW_MAJOR*/)
{
 md::ArrayDimensions dims = matrix.getDimensions();
 if (dims.size() != 2)
 {
 std::ostringstream ostrstrm;
 ostrstrm << "Number of dimensions must be 2; actual number: " << dims.size();
 throw std::runtime_error(ostrstrm.str());
 }

 switch(layoutOfArray)
 {
 case md::MemoryLayout::ROW_MAJOR:
 for (size_t row = 0; row < dims[0]; ++row)
 {
 for (size_t col = 0; col < dims[1]; ++col)
 {
 std::cout << matrix[row][col] << " ";
 }
 std::cout << std::endl;
 }
 break;

 case md::MemoryLayout::COLUMN_MAJOR:
 for (size_t col = 0; col < dims[1]; ++col)
 {
 for (size_t row = 0; row < dims[0]; ++row)
 {
 std::cout << matrix[row][col] << " ";
 }
 std::cout << std::endl;
 }
 break;
 }
 std::cout << std::endl;
}

See Also

More About
• “Workflow to Integrate with a C++ Shared Library that Uses the MATLAB Data API” on page

10-2
• “Generate a C++ MATLAB Data API Shared Library and Build a C++ Application”

 Writing C++ Driver Code Using the C++ MATLAB Data Array API

10-7

	Installation and Configuration
	Configure the mbuild Options File
	Solve Installation Problems

	Libraries
	Implement a C Shared Library with a Driver Application
	Call a C Shared Library
	Restrictions When Using MATLAB Function loadlibrary

	Compile and Test a MATLAB Generated C Shared Library
	Compiling the Driver Application
	Testing the Application

	Integrate C++ Shared Libraries
	C++ Shared Library Wrapper
	C++ Shared Library Example

	Use Multiple Shared Libraries in Single Application
	Initialize and Terminate Multiple Shared Libraries
	Work with MATLAB Function Handles
	Work with Objects

	Understand the mclmcrrt Proxy Layer
	Call MATLAB Compiler SDK API Functions from C/C++
	Functions in the Shared Library
	Type of Application
	Structure of Programs That Call Shared Libraries
	Library Initialization and Termination Functions
	Print and Error Handling Functions
	Functions Generated from MATLAB Files
	Retrieving MATLAB Runtime State Information While Using Shared Libraries

	Memory Management and Cleanup
	Overview
	Passing mxArrays to Shared Libraries

	Write Applications for macOS
	Objective-C/C++ Applications for Apple’s Cocoa API
	Where’s the Example Code?
	Preparing Your Apple Xcode Development Environment
	Build and Run the Sierpinski Application
	Running the Sierpinski Application

	Deployment Process
	Package C/C++ Applications
	About the MATLAB Runtime
	How is the MATLAB Runtime Different from MATLAB?
	Performance Considerations and the MATLAB Runtime

	Install and Configure the MATLAB Runtime
	Download the MATLAB Runtime Installer from the Web
	Install the MATLAB Runtime Interactively
	Install the MATLAB Runtime Non-Interactively
	Install the MATLAB Runtime without Administrator Rights
	Multiple MATLAB Runtime Versions on Single Machine
	MATLAB and MATLAB Runtime on Same Machine
	Uninstall MATLAB Runtime

	Use Parallel Computing Toolbox in Deployed Applications
	Embed Parallel Computing Toolbox Profile in the Application

	Deploy Applications on Network Drives
	MATLAB Compiler SDK Deployment Messages

	Distributing Code to an End User
	MATLAB Runtime Component Cache and Deployable Archive Embedding

	Compiler Commands
	Compiler Tips
	Deploying Applications That Call the Java Native Libraries
	Using the VER Function in a Compiled MATLAB Application

	Troubleshooting
	Common Issues
	Compilation Failures
	Testing Failures
	Application Deployment Failures
	Troubleshoot mbuild
	Deployed Applications

	Reference Information
	MATLAB Runtime Path Settings for Development and Testing
	Path for Java Development on All Platforms
	Path Modifications Required for Accessibility
	Windows Settings for Development and Testing
	Linux Settings for Development and Testing
	OS X Settings for Development and Testing

	MATLAB Runtime Path Settings for Run-Time Deployment
	General Path Guidelines
	Path for Java Applications on All Platforms
	Windows Path for Run-Time Deployment
	Linux Paths for Run-Time Deployment
	OS X Paths for Run-Time Deployment

	MATLAB Compiler SDK Licensing
	Use MATLAB Compiler SDK Licenses for Development

	Deployment Product Terms

	Functions
	<library>Initialize[WithHandlers]
	mclGetLastErrorMessage
	mclGetLogFileName
	mclInitializeApplication
	mclIsJVMEnabled
	mclIsMCRInitialized
	mclIsNoDisplaySet
	mclmcrInitialize
	mclRunMain
	mclTerminateApplication
	mclWaitForFiguresToDie
	<library>Terminate

	C++ Utility Library Reference
	Data Conversion Restrictions for the C++ MWArray API
	Primitive Types
	C++ Utility Classes
	mwString
	mwException
	mwArray

	C++ MATLAB Data API
	matlab::cpplib::initMATLABApplication
	matlab::cpplib::runMain
	matlab::cpplib::convertUTF8StringToUTF16String
	matlab::cpplib::convertUTF16StringToUTF8String
	matlab::cpplib::initMATLABLibrary
	matlab::cpplib::initMATLABLibraryAsync
	matlab::cpplib::MATLABLibrary::feval
	matlab::cpplib::MATLABLibrary::fevalAsync
	matlab::cpplib::MATLABLibrary::waitForFiguresToClose

	Workflow: C++ Shared Library using MATLAB Data API
	Workflow to Integrate with a C++ Shared Library that Uses the MATLAB Data API
	Writing C++ Driver Code Using the C++ MATLAB Data Array API

